
Finding
Word Sense Embeddings Of Known Meaning

Lyndon White, Roberto Togneri, Wei Liu, and Mohammed Bennamoun

The University of Western Australia,
35 Stirling Highway, Crawley, Western Australia

lyndon.white@research.uwa.edu.au, roberto.togneri@uwa.edu.au,
wei.liu@uwa.edu.au, mohammed.bennamoun@uwa.edu.au

Abstract. Word sense embeddings are vector representations of pol-
ysemous words – words with multiple meanings. These induced sense
embeddings, however, do not necessarily correspond to any dictionary
senses of the word. To overcome this, we propose a method to find new
sense embeddings with known meaning. We term this method refitting,
as the new embedding is fitted to model the meaning of a target word
in an example sentence. The new lexically refitted embeddings are learnt
using the probabilities of the existing induced sense embeddings, as well
as their vector values. Our contributions are threefold: (1) The refitting
method to find the new sense embeddings; (2) a novel smoothing technique,
for use with the refitting method; and (3) a new similarity measure for
words in context, defined by using the refitted sense embeddings. We show
how our techniques improve the performance of the Adaptive Skip-Gram
sense embeddings for word similarly evaluation; and how they allow the
embeddings to be used for lexical word sense disambiguation.

1 Introduction

Popular word embedding vectors, such as Word2Vec, represent a word’s semantic
meaning and its syntactic role as a point in a vector space [1, 2]. As each word is
only given one embedding, such methods are restricted to the representation of
only a single combined sense, or meaning, of the word. Word sense embeddings
generalise word embeddings to handle polysemous and homonymous words. Often
these sense embeddings are learnt through unsupervised Word Sense Induction
(WSI) [3–6]. The induced sense embeddings are unlikely to directly coincide with
any set of human defined meaning at all, i.e. they will not match lexical senses such
as those defined in a lexical dictionary, e.g. WordNet [7]. These induced senses may
be more specific, more broad, or include the meanings of jargon not in common use.

One may argue that WSI systems can capture better word senses than human
lexicographers do manually. However, this does not mean that induced senses can
replace standard lexical senses. It is important to appreciate the vast wealth of
existing knowledge defined around lexical senses. Methods to link induced senses
to lexical senses allow us to take advantage of both worlds.

We propose a refitting method to generate a sense embedding vector that
matches with a labelled lexical sense. Given an example sentence with the labelled
lexical sense of a particular word, the refitting method algorithmically combines the
induced sense embeddings of the target word such that the likelihood of the example
sentence is maximised. We find that in doing so, the sense of the word in that sentence
is captured. With the refitting, the induced sense embeddings are now able to be used
in more general situations where standard senses, or user defined senses are desired.

Refitting word sense vectors to match a lexicographical sense inventory, such as
WordNet or a translator’s dictionary, is possible if the sense inventory features at
least one example of the target sense’s use. Our method allows this to be done very
rapidly, and from only the single example of use this has with possible applications
in low-resource languages.

Refitting can also be used to fit to a user provided example, giving a specific
sense vector for that use. This has strong applications in information retrieval. The
user can provide an example of a use of the word they are interested in. For example,
searching for documents about “banks” as in “the river banks were very muddy”. By
generating an embedding for that specific sense, and by comparing with the gener-
ated embeddings in the indexed documents, we can not only pick up on suitable uses
of other-words for example “beach” and “shore”, but also exclude different usages,
for example of a financial bank. The method we propose, using our refitted embed-
dings, has lower time complexity than AvgSimC [3], the current standard method
for evaluating the similarity of words in context. This is detailed in Section 5.1.

We noted during refitting, that a single induced sense would often dominate
the refitted representation. It is rare in natural language for the meaning to be
so unequivocal. Generally, a significant overlap exists between the meaning of
different lexical senses, and there is often a high level of disagreement when humans
are asked to annotate a corpus [8]. We would expect that during refitting there
would likewise be contention over the most likely induced sense. Towards this
end, we develop a smoothing method, which we call geometric smoothing that
de-emphasises the sharp decisions made by the (unsmoothed) refitting method. We
found that this significantly improves the results. This suggests that the sharpness
of sense decisions is an issue with the language model, which smoothing can correct.
The geometric smoothing method is presented in Section 3.2.

We demonstrate the refitting method on sense embedding vectors induced
using Adaptive Skip-Grams (AdaGram) [6], as well as our own simple greedy word
sense embeddings. The method is applicable to any skip-gram-like language model
that can take a sense vector as its input, and can output the probability of a word
appearing in that sense’s context.

The rest of the paper is organised as follows: Section 2 briefly discusses two areas
of related works. Section 3 presents our refitting method, as well as our proposed
geometric smoothing method. Section 4 describes the WSI embedding models used
in the evaluations. Section 5 defines the RefittedSim measure for word similarity
in context, and presents its results. Section 6 shows how the refitted sense vectors
can be used for lexical WSD. Finally, the paper concludes in Section 7.

2 Related Works

2.1 Directly Learning Lexical Sense Embeddings

In this area of research, the induction of word sense embeddings is treated as a
supervised, or semi-supervised task, that requires sense labelled corpora for training.

Iacobacci et al. [9] use a Continuous Bag of Word language model [1], using
word senses as the labels rather than words. This is a direct application of word
embedding techniques. To overcome the lack of a large sense labelled corpus,
Iacobacci et al. use a 3rd party WSD tool, BabelFly [10], to add sense annotations
to a previously unlabelled corpus.

Chen et al. [11] use a supervised approach to train sense vectors, with an un-
supervised WSD labelling step. They partially disambiguate their training corpus,
using word sense vectors based on WordNet; and use these labels to train their
embeddings. This relabelled data is then used as training data, for finding sense
embeddings using skip-grams.

Our refitting method learns a new sense embedding as a weighted sum of
existing induced sense embeddings of the target word. Refitting is a one-shot
learning solution, as compared to the approaches used in the works discussed above.
A notable advantage is the time taken to add a new sense. Adding a new sense
is practically instantaneous, and replacing the entire sense inventory, of several
hundred thousand senses, is only a matter of a few hours. Whereas for the existing
approaches this would require repeating the training process, which will often take
several days. Refitting is a process done to word sense embeddings, rather than
a method for finding sense embeddings from a large corpus.

2.2 Mapping induced senses to lexical senses

By defining a stochastic map between the induced and lexical senses, Agirre et
al. [12], propose a general method for allowing WSI systems to be used for WSD.
Their work was used in SemEval-2007 Task 02 [13] to evaluate all entries. Agirre et
al. use a mapping corpus to find the probability of a lexical sense, given the induced
sense according to the WSI system. This is more general than the approach we
propose here, which only works for sense embedding based WSI. By exploiting the
particular properties of sense embedding based WSI systems we propose a system
that can better facilitate the use of this subset of WSI systems for WSD.

3 Proposed Refitting Framework

The key contribution of this work is to provide a way to synthesise a word sense
embedding given only a single example sentence and a set of pretrained sense
embedding vectors. We termed this refitting the sense vectors. By refitting the
unsupervised vectors we define a new vector, that lines up with the specific meaning
of the word from the example sentence.

This can be looked at as a one-shot learning problem, analogous to regression.
The training of the induced sense, and of the language model, can be considered

an unsupervised pre-training step. The new word sense embedding should give a
high value for the likelihood of the example sentence, according to the language
model. It should also generalise to give a high likelihood of other contexts where
this word sense occurs.

We initially attempted to directly optimise the sense vector to predict the
example. We applied the L-BFGS [14] optimisation algorithm with the sense vector
being the parameter being optimised over, and the objective being to maximise
the probability of the example sentence according to the language model. This
was found to generalise poorly, due to over-fitting, and to be very slow. Rather
than a direct approach, we instead take inspiration from the locally linear relation-
ship between meaning and vector position that has been demonstrated for word
embeddings [1, 15, 16].

To refit the induced sense embeddings to a particular meaning of a word, we
express that a new embedding as as a weighted combination of the induced sense
vectors. The weight is determined by the probability of each induced sense given
the context.

Given a collection of induced (unlabelled) embeddings u=u1,...,unu
, and an

example sentence c=w1,...,wnc
we define a function l(u |c) which determines the

refitted sense vector, from the unsupervised vectors and the context as:

l(u |c)=
∑
∀ui∈u

uiP (ui |c) (1)

Bayes’ Theorem can be used to estimate the posterior predictive distribution
P (ui |c).

Bengio et al. [17] describe a similar method to Equation (1) for finding (single
sense) word embeddings for words not found in their vocabulary. The formula
they give is as per Equation (1), but summing over the entire vocabulary of words
(rather than just u).

3.1 A General WSD method

Using the language model and application of Bayes’ theorem, we define a general
word sense disambiguation method that can be used for refitting (Equation (1)),
and for lexical word sense disambiguation (see Section 6). This is a standard
approach of using Bayes’ theorem [5, 6]. We present it here for completeness.

The context is used to determine which sense is the most suitable for this use
of the target word (the word being disambiguated). Let s = (s1, ...,sn), be the
collection of senses for the target word1.

Let c=(w1,...,wnc
) be a sequence of words making up the context of the target

word. For example for the target word kid, the context could be c = (wow the
wool from the, is, so, soft, and, fluffy), where kid is the central word taken from
between the and fluffy.

1 As this part of our method is used with both the unsupervised senses and the lexical
senses, referred to as u and l respectively in other parts of the paper, here we use a
general sense s to avoid confusion.

For any particular sense, si, the multiple sense skip-gram language model can
be used to find the probability of a word wj occurring in the context: P (wj |si).
By assuming the conditional independence of each word wj in the context, given
the sense embedding si, the probability of the context can be calculated:

P (c |si)=
∏
∀wj∈c

P (wj |si) (2)

The correctness of the conditional independence assumption depends on the qual-
ity of the representation – the ideal sense representation would fully capture all
information about the contexts it can appear in – thus the other contexts elements
would not present any additional information, and so P (wa |wb,si) =P (wa | si).
Given this, we have an estimate of P (c | si) which can be used to find P (si | c).
However, a false assumption of independence contributes towards overly sharp
estimates of the posterior distribution [18], which we seek to address in Section 3.2
with geometric smoothing.

Bayes’ Theorem is applied to this context likelihood function P (c |si) and a
prior for the sense P (si) to allow the posterior probability to be found:

P (si |c)=
P (c |si)P (si)∑

sj∈sP (c |sj)P (sj)
(3)

This is the probability of the sense given the context.

3.2 Geometric Smoothing for General WSD

During refitting, we note that often one induced sense would be calculated as having
much higher probability of occurring than the others (according to Equation (3)).
This level of certainty is not expected to occur in natural languages, ambiguity
is almost always possible. To resolve such dominance problems, we propose a new
geometric smoothing method. This is suitable for smoothing posterior probabil-
ity estimates derived from products of conditionally independent likelihoods. It
smooths the resulting distribution, by shifting all probabilities to be closer to the
uniform distribution.

We hypothesize that the sharpness of probability estimates from Equation (3)
is a result of data sparsity, and of a false independence assumption in Equation (2).
This is well known to occur for n-gram language models [18]. Word-embeddings
language models largely overcome the data sparsity problem due to weight sharing
effects [17]. We suggest that the problem remains for word sense embeddings, where
there are many more classes. Thus the training data must be split further between
each sense than it was when split for each word. The power law distribution of word
use [19] is compounded by word senses within those used also following the a power
law distribution [20]. Rare senses are liable to over-fit to the few contexts they do
occur in, and so give disproportionately high likelihoods to contexts that those are
similar to. We propose to handle these issues through additional smoothing.

We consider replacing the unnormalised posterior with its nc-th root, where
nc is the length of the context. We replace the likelihood of Equation (2) with

PS(c | si) =
∏
∀wj∈c

nc
√
P (wj |si). Similarly, we replace the prior with: PS(si) =

nc
√
P (wj |si) When this is substituted into Equation (3), it becomes a smoothed

version of P (si |c).

PS(si |c)=
nc
√
P (c |si)P (si)∑

sj∈s
nc
√
P (c |sj)P (sj)

(4)

The motivation for taking the nc-th root comes from considering the case of the
uniform prior. In this case PS(c |si) is the geometric mean of the individual word
probabilitiesPS(wj |si). Consider, if one has two context sentences, c={w1,...,wnc

}
and c′ = {w′1,...,w′nc′

}, such that n′c > n′c then using Equation (2) to calculate
P (c | si) and P (c′ | si) will result in incomparable results as additional number
of probability terms will dominate – often significantly more than the relative
values of the probabilities themselves. The number of words that can occur in the
context of any given sense is very large – a large portion of the vocabulary. We
would expect, averaging across all words, that each addition word in the context
would decrease the probability by a factor of 1

V , where V is the vocabulary size.
The expected probabilities for P (c |si) is 1

V nc and for P (c′ |si) is 1
V n

c′ . As nc′>nc,
thus we expect P (c′ |si)�P (c |si). Taking the nc-th and nc′-th roots of P (c |si)
and P (c |si) normalises these probabilities so that they have the same expected
value; thus making a context-length independent comparison possible. When this
normalisation is applied to Equation (3), we get the smoothing effect.

4 Experimental Sense Embedding Models

We trained two sense embedding models, AdaGram [6] and our own Greedy Sense
Embedding method. During training we use the Wikipedia dataset as used by Huang
et al. [4]. However, we do not perform the extensive preprocessing used in that work.

Most of our evaluations are carried out on Adaptive SkipGrams (AdaGram)
[6]. AdaGram is a non-parametric Bayesian extension of Skip-gram. It learns a
number of different word senses, as are required to properly model the language.

We use the implementation2 provided by the authors with minor adjustments
for Julia [21] v0.5 compatibility.

The AdaGram model was configured to have up to 30 senses per word, where
each sense is represented by a 100 dimension vector. The sense threshold was set
to 10−10 to encourage many senses. Only words with at least 20 occurrences are
kept, this gives a total vocabulary size of 497,537 words.

To confirm that our techniques are not merely a quirk of the AdaGram method
or its implementation, we implemented a new simple baseline word sense embed-
ding method. This method starts with a fixed number of randomly initialised
embeddings, then greedily assigns each training case to the sense which predicts it
with the highest probability (using Equation (3)). The task remains the same: using
skip-grams with hierarchical softmax to predict the context words for the input

2 https://github.com/sbos/AdaGram.jl

word sense. This is similar to [22], however it is using collocation probability, rather
than distance in vector-space as the sense assignment measure. Our implementation
is based on a heavily modified version of Word2Vec.jl3.

This method is intrinsically worse than AdaGram. Nothing in the model en-
courages diversification and specialisation of the embeddings. Manual inspection
reveals that a variety of senses are captured, though with significant repetition of
common senses, and with rare senses being missed. Regardless of its low quality,
it is a fully independent method from AdaGram, and so is suitable for our use in
checking the generalisation of the refitting techniques.

The vocabulary used is smaller than for the AdaGram model. Words with at
least 20,000 occurrences are allocated 20 senses. Words with at least 250 occurrences
are restricted to a single sense. The remaining rare words are discarded. This results
in a vocabulary size of 88,262, with 2,796 words having multiple senses. We always
use a uniform prior, as the model does not facilitate easy calculation of the prior.

5 Similarity of Words in Context

Estimating word similarity with context is the task of determining how similar
words are, when presented with the context they occur in. The goal of this task
is to match human judgements of word similarity. For each of the target words
and contexts; we use refitting on the target word to create a word sense embedding
specialised for the meaning in the context provided. Then the similarity of the
refitted vectors can be measured using cosine distance (or similar). By measuring
similarity this way, we are defining a new similarity measure.

Reisinger and Mooney [3] define a number of measures for word similarity
suitable for use with sense embeddings. The most successful was AvgSimC, which
has become the gold standard method for use on similarity tasks. It has been used
with great success in many works [4, 11, 5].

AvgSimC is defined using distance metric d (normally cosine distance) as:

AvgSimC((u,c),(u′,c′))=
1

n×n′
∑
ui∈u

∑
u′
j∈u′

P (ui |c)P (u′j |c′)d(ui,u
′
j) (5)

for contexts c and c′, the contexts of the two words to be compared, and for
u = {u1,...,un} and u′= {u′1,...,u′n′} the respective sets of induced senses of the
two words.

5.1 A New Similarity Measure: RefittedSim

We define a new similarity measure, RefittedSim, as the distance between the refitted
sense embeddings. As shown in Figure 1 the example contexts are used to refit the
induced sense embeddings of each word. This is a direct application of Equation (1).

3 https://github.com/tanmaykm/Word2Vec.jl/

Fig. 1: Block diagram for RefittedSim similarity measure

Sentence containing
Word1

Word1 Word2
Sentence containing

Word2

Pretrained Unsupervised
Sense Embeddings

Refitting Refitting

Distance RefittedSim

u={u1,...} u′ ={u′
1,...}

c c′

l(u |c) l(u′ |c′)

Using the same definitions as in Equation (5), RefittedSim is defined as:

RefittedSim((u,c),(u′,c′)) = d(l(u |c),l(u′ |c′)=d
(∑

ui∈uuiP (ui |c),
∑

u′
j∈u′uiP (u′j |c′)

)
(6)

AvgSimC is a probability weighted average of pairwise computed distances for
each sense vector. Whereas RefittedSim is a single distance measured between the
two refitted vectors – which are the probability weighted averages of the original
unsupervised sense vectors.

There is a notable difference in time complexity between AvgSimC and Refitted-
Sim. AvgSimC has time complexity O(n‖c‖+n′‖c′‖+n×n′), while RefittedSim
hasO(n‖c‖+n′‖c′‖). The product of the number of senses of each word n×n′, may
be small for dictionary senses, but it is often large for induced senses. Dictionaries
tend to define only a few senses per word – the average4 number of senses per word
in WordNet is less than three [7]. For induced senses, however, it is often desirable
to train many more senses, to get better results using the more fine-grained infor-
mation. Reisinger and Mooney [3] found optimal results in several evaluations near
50 senses. In such cases the O(n×n′) is significant, avoiding it with RefittedSim
makes the similarity measure more useful for information retrieval.

5.2 Experimental Setup

We evaluate our refitting method using Stanford’s Contextual Word Similarities
(SCWS) dataset [4]. During evaluation, each context paragraph is limited to 5
words to either side of the target word, as in the training.

5.3 Results

Table 1a shows the results of our evaluations on the SCWS similarity task. A
significant improvement can be seen by applying our techniques.

4 It should be noted, though, that the number of meanings is not normally distributed [23].

Table 1: Spearman rank correlation ρ×100 when evaluated on the SCWS task.

(a) For varying hyper-parameters.

Method Geometric
Smoothing

Use
Prior AvgSimC RefittedSim

AdaGram T T 53.8 64.8
AdaGram T F 36.1 65.0
AdaGram F T 43.8 47.8
AdaGram F F 20.7 24.1

Greedy T F 23.6 49.7
Greedy F F 22.2 40.7

(b) Compared to other methods .
RefittedSim-S is with smoothing, and
RefittedSim-SU is with uniform prior

Paper Embedding Similarity ρ×100

This paper AdaGram AvgSimC 43.8
This paper AdaGram RefittedSim-S 64.8
This paper AdaGram RefittedSim-SU 65.0

[4] Huang et al. AvgSimC 65.7
[4] Pruned tf-idf AvgSimC 60.5
[11] Chen et al. AvgSimC 68.9
[5] Tian et al. AvgSimC 65.4
[5] Tian et al. MaxSim 65.6
[9] SenseEmbed Min Tanimoto 58.9
[9] SenseEmbed Weighted Tanimoto 62.4

The RefittedSim method consistently outperforms AvgSimC across all configu-
rations. Similarly geometric smoothing consistently improves performance both for
AvgSimC and for RefittedSim. The improvement is significantly more for Refitted-
Sim than for AvgSimC results. In general using the unsupervised sense prior esti-
mate from the AdaGram model, improves performance – particularly for AvgSimC.
The exception to this is with RefittedSim with smoothing, where it makes very little
difference. Unsurprisingly, given its low quality, the Greedy embeddings are always
outperformed by AdaGram. It is not clear if these improvements will transfer to
clustering based methods due to the differences in how the sense probability is
estimated, compared to the language model based method evaluated on in Table 1a.

Table 1b compares our results with those reported in the literature using other
methods. These results are not directly comparable, as each method uses a different
training corpus, with different preprocessing steps, which can have significant
effects on performance. It can been seen that by applying our techniques we bring
the results of our AdaGram model from very poor (ρ×100 = 43.8) when using
normal AvgSimC without smoothing, up to being competitive with other models,
when using RefittedSim with smoothing. The method of Chen et al. [11], has a
significant lead on the other results presented. This can be attributed to its very
effective semi-supervised fine-tuning method. This suggests a possible avenue for
future development in using refitted sense vectors to relabel a corpus, and then
performing fine-tuning similar to that done by Chen et al.

6 Word Sense Disambiguation

6.1 Refitting for Word Sense Disambiguation

Once refitting has been used to create sense vectors for lexical word senses, an
obvious used of them is to perform word sense disambiguation. In this section
we refer to the lexical word sense disambiguation problem, i.e. to take a word
and find its dictionary sense; whereas the methods discussed in Equations (3)

Target
Lemma

Target
POS Tag

Target
Word

WordNet
Sense Inventory

Pretrained Unsupervised
Sense Embeddings

Refitting

Lexical WSD

Sentence

Disambiguated
Sense
l?

Synset Glosses
{c1,c2,...}

Induced
Sense Embeddings
u={u1,u2,...}

Lexical
Sense Embeddings

l={l1,l2,..}

Lexical
Sense Priors
{P (l1),P (l2),...}

cT

Fig. 2: Block diagram for performing WSD using refitting.

and (4) consider the more general problem, as applicable to disambiguating lexical
or induced word senses depending on the inputs. Our overall process shown in
Figure 2 uses both: first disambiguating the induced senses as part of refitting,
then using the refitted sense vectors to find the most likely dictionary sense.

First, refitting is used to transform the induced sense vectors into lexical sense
vectors. We use the targeted word’s lemma (i.e. base form), and part of speech
(POS) tag to retrieve all possible definitions of the word (Glosses) from WordNet;
there is one gloss per sense. These glosses are used as the example sentence to
perform refitting (see Section 3). We find embeddings, l={l1,...,lnl

} for each of the
lexical word senses using Equation (1). These lexical word senses are still supported
by the language model, which means one can apply the general WSD method to
determine the posterior probability of a word sense, given an observed context.

When given a sentence cT , containing a target word to be disambiguated, the
probability of each lexical word sense P (li |cT), can be found using Equation (3) (or
the smoothed version Equation (4)), over the lexically refitted sense embeddings.
Then, selecting the correct sense is simply selecting the most likely sense:

l?(l,cT)=argmax:
∀li∈l

P (li|cT)=argmax:
∀li∈l

P (cT | li)P (li)∑
∀lj∈lP (cT | lj)P (lj)

(7)

6.2 Lexical Sense Prior

WordNet includes frequency counts for each word sense based on Semcor [24].
These form a prior for P (li). The comparatively small size of Semcor means that
many word senses do not occur at all. We apply add-one smoothing to remove any
zero counts. This is in addition to using our proposed geometric smoothing as an
optional part of the general WSD. Geometric smoothing serves a different (but
related) purpose, of decreasing the sharpness of the likelihood function – not of
removing impossibilities from the prior.

6.3 Experimental Setup

The WSD performance is evaluated on the SemEval 2007 Task 7.
We use the weighted mapping method of Agirre et al. [12], (see Section 2.2) as

a baseline alternative method for using WSI senses for WSD. We use Semcor as
the mapping corpus, to derive the mapping weights.

The second baseline we use is the Most Frequent Sense (MFS). This method
always disambiguates any word as having its most common meaning. Due to the
power law distribution of word senses, this is a very effective heuristic [20]. We
also consider the results when using a backoff to MSF when a method is unable
to determine the word sense the method can report the MFS instead of returning
no result (a non-attempt).

6.4 Word Sense Disambiguation Results

Method Attempted Precision Recall F1

Refitted-S AdaGram 99.91% 0.799 0.799 0.799
Refitted AdaGram 99.91% 0.774 0.773 0.774
Refitted-S Greedy 79.95% 0.797 0.637 0.708
Refitted-S Greedy ∗ 100.00% 0.793 0.793 0.793
Refitted Greedy 79.95% 0.725 0.580 0.645
Refitted Greedy ∗ 100.00% 0.793 0.793 0.793
Mapped AdaGram 84.31% 0.776 0.654 0.710
Mapped AdaGram ∗ 100.00% 0.736 0.736 0.736
MFS baseline 100.00% 0.789 0.789 0.789

Table 2: Results on SemEval 2007 Task 7 – course-all-words disambiguation. The
-S marks results using geometric smoothing. The ∗ marks results with MSF backoff.

The results of employing our method for WSD , are shown in Table 2. Our results
using smoothed refitting, both with AdaGram and Greed Embeddings with backoff,
outperform the MSF baseline [25] – noted as a surprisingly hard baseline to beat [11].

The mapping method [12] was not up to the task of mapping unsupervised
senses to supervised senses, on this large scale task. The Refitting method works
better. Though refitting is only usable for language-model embedding WSI, the
mapping method is suitable for all WSI systems.

While not directly comparable due to the difference in training data, we note
that our Refitted results, are similar in performance, as measured by F1 score, to
the results reported by Chen et al. [11]. AdaGram with smoothing, and Greedy
embeddings with backoff have close to the same result as reported for L2R with
backoff – with the AdaGram slightly better and the Greedy embeddings slightly
worse. They are exceeded by the best method reported in that paper: S2C method
with backoff. Comparison to non-embedding based methods is not discussed here
for brevity. Historically state of the art systems have functioned very differently;
normally by approaching the WSD task by more direct means.

Our results are not strong enough for Refitted AdaGram to be used as a WSD
method on its own, but do demonstrate that the senses found by refitting are
capturing the information from lexical senses. It is now evident that the refitted

sense embeddings are able to perform WSD, which was not possible with the
unsupervised senses.

7 Conclusion

A new method is proposed for taking unsupervised word embeddings, and adapting
them to align to particular given lexical senses, or user provided usage examples.
This refitting method thus allows us to find word sense embeddings with known
meaning. This method can be seen as a one-shot learning task, where only a single la-
belled example of each class is available for training. We show how our method can be
used to create embeddings to evaluate the similarity of words, given their contexts.

This allows us to propose a new similarity measuring method, RefittedSim. The
performance of RefittedSim on AdaGram is comparable to the results reported
by the researchers of other sense embeddings techniques using AvgSimC, but its
time complexity is significantly lower. We also demonstrate how similar refitting
principles can be used to create a set of vectors that are aligned to the meanings
in a sense inventory, such as WordNet.

We show how this can be used for word sense disambiguation. On this difficult
task, it performs marginally better than the hard to beat MFS baseline, and
significantly better than a general mapping method used for working with WSI
senses on lexical WSD tasks. As part of our method for refitting, we present a
geometric smoothing to overcome the issues of overly dominant senses probability
estimates. We show that this significantly improves the performance. Our refitting
method provides effective bridging between the vector space representation of
meaning, and the traditional discrete lexical representation. More generally it
allows a sense embedding to be created to model the meaning of a word in any
given sentence. Significant applications of sense embeddings in tasks such as more
accurate information retrieval thus become possible.

References

1. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word
representations in vector space. arXiv:1301.3781 (2013)

2. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word
representation. In: Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP 2014). (2014) 1532–1543

3. Reisinger, J., Mooney, R.J.: Multi-prototype vector-space models of word meaning.
In: Human Language Technologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computational Linguistics, Association
for Computational Linguistics (2010) 109–117

4. Huang, E.H., Socher, R., Manning, C.D., Ng, A.Y.: Improving word representations
via global context and multiple word prototypes. In: Proceedings of the 50th Annual
Meeting of the Association for Computational Linguistics: Long Papers-Volume
1, Association for Computational Linguistics (2012) 873–882

5. Tian, F., Dai, H., Bian, J., Gao, B., Zhang, R., Chen, E., Liu, T.Y.: A probabilistic
model for learning multi-prototype word embeddings. In: COLING. (2014) 151–160

6. Bartunov, S., Kondrashkin, D., Osokin, A., Vetrov, D.P.: Breaking sticks and
ambiguities with adaptive skip-gram. CoRR abs/1502.07257 (2015)

7. Miller, G.A.: Wordnet: a lexical database for english. Communications of the ACM
38 (1995) 39–41

8. Véronis, J.: A study of polysemy judgements and inter-annotator agreement. In:
Programme and advanced papers of the Senseval workshop. (1998) 2–4

9. Iacobacci, I., Pilehvar, M.T., Navigli, R.: Sensembed: learning sense embeddings
for word and relational similarity. In: Proceedings of ACL. (2015) 95–105

10. Moro, A., Raganato, A., Navigli, R.: Entity Linking meets Word Sense Disam-
biguation: a Unified Approach. Transactions of the Association for Computational
Linguistics (TACL) 2 (2014) 231–244

11. Chen, X., Liu, Z., Sun, M.: A unified model for word sense representation and
disambiguation. In: EMNLP, Citeseer (2014) 1025–1035

12. Agirre, E., Mart́ınez, D., De Lacalle, O.L., Soroa, A.: Evaluating and optimizing the
parameters of an unsupervised graph-based wsd algorithm. In: Proceedings of the
first workshop on graph based methods for natural language processing, Association
for Computational Linguistics (2006) 89–96

13. Agirre, E., Soroa, A.: Semeval-2007 task 02: Evaluating word sense induction
and discrimination systems. In: Proceedings of the 4th International Workshop
on Semantic Evaluations. SemEval ’07, Stroudsburg, PA, USA, Association for
Computational Linguistics (2007) 7–12

14. Nocedal, J.: Updating quasi-newton matrices with limited storage. Mathematics
of computation 35 (1980) 773–782

15. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed
representations of words and phrases and their compositionality. In: Advances in
Neural Information Processing Systems. (2013) 3111–3119

16. Mikolov, T., Yih, W.t., Zweig, G.: Linguistic regularities in continuous space word
representations. In: HLT-NAACL. (2013) 746–751

17. Bengio, Y., Ducharme, R., Vincent, P., Janvin, C.: A neural probabilistic language
model. The Journal of Machine Learning Research (2003) 137–186

18. Rosenfeld, R.: Two decades of statistical language modeling: Where do we go from
here? Proceedings of the IEEE 88 (2000) 1270–1278

19. Zipf, G.: Human behavior and the principle of least effort: an introduction to human
ecology. Addison-Wesley Press (1949)

20. Kilgarriff, A. In: How Dominant Is the Commonest Sense of a Word? Springer Berlin
Heidelberg, Berlin, Heidelberg (2004) 103–111

21. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: A fresh approach to
numerical computing. (2014)

22. Neelakantan, A., Shankar, J., Passos, A., McCallum, A.: Efficient non-parametric
estimation of multiple embeddings per word in vector space. arXiv preprint
arXiv:1504.06654 (2015)

23. Zipf, G.K.: The meaning-frequency relationship of words. The Journal of general
psychology 33 (1945) 251–256

24. Tengi, R.I.: Design and implementation of the WordNet lexical database and
searching software. In: WordNet: an electronic lexical database, The MIT Press,
Cambridge, Massachusetts. (1998) 105

25. Navigli, R., Litkowski, K.C., Hargraves, O.: Semeval-2007 task 07: Coarse-grained
english all-words task. In: Proceedings of the 4th International Workshop on
Semantic Evaluations. SemEval ’07, Stroudsburg, PA, USA, Association for
Computational Linguistics (2007) 30–35

