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Abstract—Converting a sentence to a meaningful vector representation
has uses in many NLP tasks, however very few methods allow that
representation to be restored to a human readable sentence. Being able
to generate sentences from the vector representations demonstrates the
level of information maintained by the embedding representation – in this
case a simple sum of word embeddings. We introduce such a method
for moving from this vector representation back to the original sentences.
This is done using a two stage process; first a greedy algorithm is utilised
to convert the vector to a bag of words, and second a simple probabilistic
language model is used to order the words to get back the sentence.
To the best of our knowledge this is the first work to demonstrate
quantitatively the ability to reproduce text from a large corpus based
directly on its sentence embeddings.

1 INTRODUCTION

Generally sentence generation is the main task of the
more broad natural language generation field; here we
use the term only in the context of sentence generation
from sentence vector representation. For our purposes,
a sentence generation method has as its input a sen-
tence embedding, and outputs the sentence which it
corresponds to. The input is a vector, for example s̃ =
[0.11, 0.57,−0.21, ..., 1.29], and the output is a sentence,
for example “The boy was happy.”.

Dinu and Baroni [1] motivates this work from a the-
oretical perspective given that a sentence encodes its
meaning, and the vector encodes the same meaning,
then it must be possible to translate in both directions
between the natural language and the vector represen-
tation. In this paper, we present an implementation that
indicates to some extent the equivalence between the
natural language space and the sum of word embed-
dings (SOWE) vector representation space. This equiv-
alence is shown by demonstrating a lower bound on
the capacity of the vector representation to be used for
sentence generation.

The current state of the art methods for sentence
generation produce human readable sentences which are

rough approximations of the intended sentence. These
existing works are those of Iyyer, Boyd-Graber, and
Daumé III [2] and Bowman, Vilnis, Vinyals, et al. [3]. Both
these have been demonstrated to produce full sentences.
These sentences are qualitatively shown to be loosely
similar in meaning to the original sentences. Neither
work has produced quantitative evaluations, making it
hard to compare their performance. Both are detailed
further in Section 2. Both these methods use encoder/de-
coder models trained through machine learning; we
present here a more deterministic algorithmic approach,
but restrict the input sentence vector to be the non-
compositional sum of word embeddings representation.

Ritter, Long, Paperno, et al. [4] and White, Togneri,
Liu, et al. [5] found that when classifying sentences
into categories according to meaning, simple SOWE out-
performed more complex sentence vector models. Both
works used sentence embeddings as the input to classi-
fiers. Ritter, Long, Paperno, et al. [4] classified challeng-
ing artificial sentences into categories based on the posi-
tional relationship described using Naı̈ve Bayes. White,
Togneri, Liu, et al. [5] classified real-world sentences into
groups of semantically equivalent paraphrases. In the
case of Ritter, Long, Paperno, et al. [4] this outperformed
the next best representation by over 5%. In the case of
White, Togneri, Liu, et al. [5] it was within a margin of
1% from the very best performing method. These results
suggest that there is high consistency in the relationship
between a point in the SOWE space, and the meaning
of the sentence.

Wieting, Bansal, Gimpel, et al. [6] presented a sen-
tence embedding based on the related average of word-
embedding, showing excellent performance across sev-
eral competitive tasks. They compared their method’s
performance against several models, including recurrent
neural networks, and long short term memory (LSTM)
architectures. It was found that their averaging method
outperformed the more complex LSTM system, on most
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Figure 1. The Sel. BOW+Ord. process for the regenerat-
ing sentences from SOWE-type sentence vectors.

sentence similarity and entailment task. Thus these sim-
ple methods are worth further consideration. SOWE is
the basis of the work presented in this paper.

Our method performs the sentence generation in two
steps, as shown in Figure 1. It combines the work of
White, Togneri, Liu, et al. [7] on generating bags of words
(BOW) from sums of word embeddings (SOWE); with
the work of Horvat and Byrne [8] on ordering BOW
into sentences. The overall approach, of word selection
followed by word ordering, can be used to generate
proper sentences from SOWE vectors.

The rest of the paper is organized into the following
sections. Section 2 discusses the prior work on sentence
generation. Section 3 explains the problem in detail and
how our method is used to solve it. Section 4 describes
the settings used for evaluation. Section 5 presents the
results of this evaluation. The paper concludes with Sec-
tion 6 and a discussion of future work on this problem.

2 RELATED WORKS

To the best of our knowledge only three prior works exist
in the area of sentence generation from embeddings. The
first two (Dinu and Baroni [1], Iyyer, Boyd-Graber, and
Daumé III [2]) are based on the recursive structures in
language, while Bowman, Vilnis, Vinyals, et al. [3], uses
the sequential structure.

Dinu and Baroni [1] extends the models described by
Zanzotto, Korkontzelos, Fallucchi, et al. [9] and Guevara
[10] for generation. The composition is described as a
linear transformation of the input word embeddings to
get an output vector, and another linear transformation
to reverse the composition reconstructing the input. The
linear transformation matrices are solved using least
squares regression. This method of composing, can be
applied recursively from words to phrases to clauses and
so forth. It theoretically generalises to whole sentences,
by recursively applying the composition or decompo-
sition functions. However, Dinu and Baroni’s work is
quantitatively assessed only on direct reconstruction
for decomposing Preposition-Noun and Adjective-Noun
word phrases. In these cases where the decomposition
function was trained directly on vectors generated using
the dual composition function they were able to get
perfect reconstruction on the word embedding based
inputs.

Iyyer, Boyd-Graber, and Daumé III [2] extends the
work of Socher, Huang, Pennington, et al. [11] defin-
ing an unfolding recursive dependency-tree recursive

autoencoder (DT-RAE). Recursive neural networks are
jointly trained for both composing the sentence’s words
into a vector, and for decomposing that vector into
words. This composition and decomposition is done by
reusing a composition neural network at each vertex
of the dependency tree structure, with different weight
matrices for each dependency relation. The total network
is trained based on the accuracy of reproducing its input
word embeddings. It can be used to generate sentences,
if a dependency tree structure for the output is provided.
This method was demonstrated quantitatively on five
examples; the generated sentences were shown to be
loosely semantically similar to the originals.

Bowman, Vilnis, Vinyals, et al. [3] uses a a modifi-
cation of the variational autoencoder (VAE) [12] with
natural language inputs and outputs, to learn the sen-
tence representations. These input and output stages
are performed using long short-term memory recurrent
neural networks [13]. They demonstrate a number of
uses of this technique, one of which is sentence gen-
eration, in the sense of this paper. While Bowman et
al. do define a generative model, they do not seek to
recreate a sentence purely from its vector input, but
rather to produce a series of probability distributions on
the words in the sentence. These distributions can be
evaluated greedily, which the authors used to give three
short examples of resynthesis. They found the sentence
embeddings created captured largely syntactic and loose
topical information.

We note that none of the aforementioned works
present any quantitative evaluations on a corpus of full
sentences. We suggest that that is due to difficulties in
evaluation. As noted in Iyyer, Boyd-Graber, and Daumé
III [2] and Bowman, Vilnis, Vinyals, et al. [3], they tend
to output lose paraphrases, or roughly similar sentences.
This itself is a separately useful achievement to pure
exact sentence generation; but it is not one that allows
ready interpretation of how much information is main-
tained by the embeddings. Demonstration of our method
at generating the example sentences used in those work
is available as supplementary material1. As our method
often can exactly recreate the original sentence from its
vector representation evaluation is simpler.

Unlike current sentence generation methods, the
non-compositional BOW generation method of White,
Togneri, Liu, et al. [7] generally outputs a BOW very
close to the reference for that sentence – albeit at the
cost of losing all word order information. It is because
of this accuracy that we base our proposed sentence
generation method on it (as detailed in Section 3.1).
The word selection step we used is directly based on
their greedy BOW generation method. We improve it for
sentence generation by composing with a word ordering
step to create the sentence generation process.

1. http://white.ucc.asn.au/publications/White2016SOWE2Sent/
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3 GENERAL FRAMEWORK

As discussed in Section 1, and shown in Figure 1,
the approach taken to generate the sentences from the
vectors comes in two steps. First selecting the words
used – this is done deterministically, based on a search of
the embedding space. Second is to order them, which we
solve by finding the most likely sequence according to a
stochastic language model. Unlike the existing methods,
this is a deterministic approach, rather than a machine
learn method. The two subproblems which result from
this split resemble more classical NP-Hard computer
science problems; thus variations on known techniques
can be used to solve them.

3.1 Word Selection

White, Togneri, Liu, et al. [7] approaches the BOW gen-
eration problem, as task of selecting the vectors that
sum to be closest to a given vector. This is related to
the knapsack and subset sum problems. They formally
define the vector selection problem as:

(s̃,V, d) 7→ argmin{
∀c̃∈N|V|

0

} d(s̃,
∑
x̃j∈V

x̃jcj)

to find the bag of vectors selected from the vocabulary
set V which when summed is closest to the target vector
s̃. Closeness is assessed with distance metric d. c̃ is the
indicator function for that multi-set of vectors. As there is
a one to one correspondence between word embeddings
and their words, finding the vectors results in finding
the words. White, Togneri, Liu, et al. [7] propose a greedy
solution to the problem2.

The key algorithm proposed by White, Togneri, Liu,
et al. [7] is greedy addition. The idea is to greedily add
vectors to a partial solution building towards a complete
bag. This starts with an empty bag of word embeddings,
and at each step the embedding space is searched for the
vector which when added to the current partial solution
results in the minimal distance to the target – when com-
pared to other vectors from the vocabulary. This step is
repeated until there are no vectors in the vocabulary that
can be added without moving away from the solution.
Then a fine-tuning step, n-substitution, is used to remove
some simpler greedy mistakes.

The n-substitution step examines partial solutions
(bags of vectors) and evaluates if it is possible to find
a better solution by removing n elements and replacing
them with up-to n different elements. The replacement
search is exhaustive over the n-ary Cartesian product of
the vocabulary. Only for n = 1 is it currently feasible
for practical implementation outside of highly restricted
vocabularies. Never-the-less even 1-substitution can be

2. We also investigated beam search as a possible improvement over
the greedy addition and n-substitution used by White, Togneri, Liu, et
al. [7], but did not find significant improvement. The additional points
considered by the beam tended to be words that would be chosen by
the greedy addition in the later steps – thus few alternatives where
found.

seen as lessening the greed of the algorithm, through
allowing early decisions to be reconsidered in the full
context of the partial solution. The algorithm does re-
main greedy, but many simple mistakes are avoided by
n-substitution. The greedy addition and n-substitution
processes are repeated until the solution converges.

3.2 The Ordering Problem
After the bag of words has been generated by the
previous step, it must be ordered (sometimes called
linearized). For example “are how , today hello ? you”,
is to be ordered into the sentence: “hello , how are you
today ?”. This problem cannot always be solved to a
single correct solution. Mitchell and Lapata [14] gives
the example of “It was not the sales manager who hit
the bottle that day, but the office worker with the serious
drinking problem.” which has the same word content
(though not punctuation) as “That day the office man-
ager, who was drinking, hit the problem sales worker
with a bottle, but it was not serious.”. However, while
a unique ordering cannot be guaranteed, finding the
most likely word ordering is possible. There are several
current methods for word ordering

To order the words we use a method based on the
work of Horvat and Byrne [8], which uses simple tri-
grams. More recent works, such as beam-search and
LSTM language model and proposed by Schmaltz, Rush,
and Shieber [15]; or a syntactic rules based method
such as presented in Zhang and Clark [16], could be
used. These more powerful ordering methods internalise
significant information about the language. The classical
trigram language model we present is a clearer baseline
for the capacity to regenerate the sentences; which then
be improved by using such systems.

Horvat and Byrne [8] formulated the word ordering
problem as a generalised asymmetrical travelling sales-
man problem (GA-TSP). Figure 2 shows an example
of the connected graph for ordering five words. We
extend beyond the approach of Horvat and Byrne [8]
by reformulating the problem as a linear mixed integer
programming problem (MIP). This allows us to take
advantage of existing efficient solvers for this problem.
Beyond the GA-TSP approach, a direct MIP formulation
allows for increased descriptive flexibility and opens the
way for further enhancement. Some of the constraints
of a GA-TSP can be removed, or simplified in the direct
MIP formulation for word ordering. For example, word
ordering does have distinct and known start and end
nodes (as shall be detailed in the next section). To
formulate it as a GA-TSP it must be a tour without
beginning or end. Horvat and Byrne [8] solve this by
simply connecting the start to the end with a zero cost
link. This is not needed if formulating this as a MIP
problem, the start and end nodes can be treated as
special cases. Being able to special case them as nodes
known always to occur allows some simplification in
the subtour elimination step. The formulation to mixed
integer programming is otherwise reasonably standard.
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Figure 2. A graph showing the legal transitions between states, when the word-ordering problem is expressed similar
to a GA-TSP. Each edge 〈wa, wb〉 → 〈wc, wd〉 has cost − log(P (wc |wawb). The nodes are grouped into districts (words).
Nodes for invalid states are greyed out.

3.2.1 Notation
We will write wi to represent a word from the bag W
(wi ∈ W), with arbitrarily assigned unique subscripts.
Where a word occurs with multiplicity greater than 1, it
is assigned multiple subscripts, and is henceforth treated
as a distinct word.

Each vertex is a sequence of two words, 〈wi, wj〉 ∈ W2.
This is a Markov state, consisting of a word wj and its
predecessor word wi – a bigram.

Each edge between two vertices represents a transi-
tion from one state to another which forms a trigram.
The start vertex is given by 〈wI, w.〉, and the end by
〈w/, wJ〉. The pseudowords wI, w., w/, wJ are added
during the trigram models’ training allowing knowledge
about the beginning and ending of sentences to be
incorporated.

The GA-TSP districts are given by the sets of all
states that have a given word in the first position. The
district for word wi is given by S(wi) ⊆ W2, defined
as S(wi) = {〈wi, wj〉 | ∀wj ∈ W}. It is required to visit
every district, thus it is required to use every word. With
this description, the problem can be formulated as a MIP
optimisation problem.

3.2.2 Optimization Model
Every MIP problem has a set of variables to optimise,
and a cost function that assesses how optimal a given
choice of values for that variable is. The cost function for
the word ordering problem must represent how unlikely
a particular order is. The variables must represent the

order taken. The variables are considered as a table
(τ ) which indicates if a particular transition between
states is taken. Note that for any pair of Markov states
〈wa, wb〉, 〈wc, wd〉 is legal if and only if b = c, so we
denote legal transitions as 〈wi, wj〉 → 〈wj , wk〉. Such a
transition has cost:

C[〈wi, wj〉, 〈wj , wk〉] = − log (P (wk|wi, wj〉)

The table of transitions to be optimized is:

τ [〈wi, wj〉, 〈wj , wk〉] =

1
if transition from

〈wi, wj〉 → 〈wj , wk〉 occurs
0 otherwise

The total cost to be minimized, is given by

Ctotal(τ) =
∑
∀wi,wj ,wk∈W3

τ [〈wi, wj〉, 〈wj , wk〉] · C[〈wi, wj〉, 〈wj , wk〉]

The probability of a particular path (i.e. of a particular
ordering) is thus given by P (τ) = e−Ctotal(τ)

The word order can be found by following the links.
The function fτ (n) gives the word that, according to τ
occurs in the nth position.

fτ (1) = {wa | wa ∈ W ∧ τ [〈wI, w.〉, 〈w., wa〉] = 1}1
fτ (2) = {wb | wb ∈ W ∧ τ [〈w., fτ (1)〉, 〈fτ (1), wb〉] = 1}1

fτ (n) = {wc | wc ∈ W ∧ τ [〈fτ (n−2), fτ (n−1)〉, 〈fτ (n−1), wc〉] = 1}1
when n≥3

The notation {·}1 indicates taking a singleton set’s only
element. The constraints on τ ensure that each set is a
singleton.
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3.2.3 Constraints
The requirements of the problem, place various con-
straints on to τ : The Markov state must be maintained:
∀〈wa, wb〉, 〈wc, wd〉 ∈ W2:

wb 6= wc =⇒ τ [〈wa, wb〉, 〈wc, wd〉] = 0

Every node entered must also be exited – except those
at the beginning and end.
∀〈wi, wj〉 ∈ W2\{〈wI, w.〉, 〈w/, wJ〉}:∑

∀〈wa,wb〉∈W2

τ [〈wa, wb〉, 〈wi, wj〉] =
∑
∀〈wc,wd〉∈W2

τ [〈wi, wj〉, 〈wc, wd〉]

Every district must be entered exactly once. i.e. every
word must be placed in a single position in the sequence.
∀wi ∈ W\{wI, wJ}:∑

∀〈wi,wj〉∈S(wi〉

∑
∀〈wa,wb〉∈W2

τ [〈wa, wb〉, 〈wi, wj〉] = 1

To allow the feasibility checker to detect if ordering
the words is impossible, transitions of zero probability
are also forbidden. i.e. if P (wn|wn−2, wn−1) = 0 then
τ [〈wn−2, wn−1〉, 〈wn−1, wn〉] = 0. These transitions, if not
expressly forbidden, would never occur in an optimal
solution in any case, as they have infinitely high cost.

3.2.3.1 Lazy Subtour Elimination Constraints: The
problem as formulated above can be input into a MIPS
solver. However, like similar formulations of the trav-
elling salesman problem, some solutions will have sub-
tours. As is usual callbacks are used to impose lazy con-
straints to forbid such solutions at run-time. However,
the actual formulation of those constraints are different
from a typical GA-TSP.

Given a potential solution τ meeting all other con-
straints, we proceed as follows.

The core path – which starts at 〈wI, w.〉 and ends at
〈w/, wJ〉 can be found. This is done by practically fol-
lowing the links from the start node, and accumulating
them into a set T ⊆ W2

From the core path, the set of words covered is given
by WT = {wi | ∀〈wi, wj〉 ∈ T } ∪ {wJ}. If WT = W then
there are no subtours and the core path is the complete
path. Otherwise, there is a subtour to be eliminated.

If there is a subtour, then a constraint must be added to
eliminate it. The constraint we define is that there must
be a connection from at least one of the nodes in the
district covered by the core path to one of the nodes in
the districts not covered.

The districts covered by the tour are given by ST =⋃
wt∈WT

S(wt). The subtour elimination constraint is
given by ∑

∀〈wt1,wt2〉∈ST

∑
∀〈wa,wb〉∈W2\ST

τ [〈wt1, wt2〉, 〈wa, wb〉] ≥ 1

i.e. there must be a transition from one of the states
featuring a word that is in the core path, to one of the
states featuring a word not covered by the core path.
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Figure 3. The distribution of the evaluation corpus after
preprocessing.

This formulation around the notion of a core path that
makes this different from typical subtour elimination in a
GA-TSP. GA-TSP problems are not generally guaranteed
to have any nodes which must occur. However, every
word ordering problem is guaranteed to have such a
node – the start and end nodes. Being able to identify
the core path allows for reasonably simple subtour elim-
ination constraint definition. Other subtour elimination
constraints, however, also do exist.

4 EXPERIMENTAL SETUP AND EVALUATIONS

This experimental data used in this evaluation was
obtained from the data released with White, Togneri, Liu,
et al. [7].3

4.1 Word Embeddings
GloVe representations of words are used in our evalua-
tions [17]. GloVe was chosen because of the availabil-
ity of a large pre-trained vocabulary of vectors.4 The
representations used for evaluation were pretrained on
the 2014 Wikipedia and Gigaword 5. Other vector rep-
resentations are presumed to function similarly. White,
Togneri, Liu, et al. [7] showed that their word selection
method significantly improves with higher dimensional
embeddings. Due to their findings, we only evaluated
300 dimensional embeddings.

4.2 Corpus and Language Modelling
The evaluation was performed on a subset of the Books
Corpus [18]. The corpus was preprocessed as in the work
of White, Togneri, Liu, et al. [7]. This meant removing any
sentences which used words not found in the embedding
vocabulary.

After preprocessing, the base corpus, was split 90:10.
90% (59,694,016 sentences) of the corpus was used to
fit a trigram model. This trigram language model was
smoothed using the Knesler-Ney back-off method [19].

3. Available online at http://white.ucc.asn.au/publications/
White2016BOWgen/

4. Available online at http://nlp.stanford.edu/projects/glove/
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Process Perfect
Sentences

BLEU
Score

Portion
Feasible

Ref. BOW+Ord. 66.6% 0.806 99.6%
Sel. BOW+Ord. 62.2% 0.745 93.7%

Table 1
The overall performance of the Sel. BOW+Ord. sentence

generation process when evaluated on the Books
corpus.

The remaining 10% of the corpus was kept in reserve.
From the 10%, 1% (66,464 sentences) were taken for
testing. From this any sentences with length over 18
words were discarded – the time taken to evaluate
longer sentences increases exponentially and becomes
infeasible. This left a final test set of 53,055 sentences.
Figure 3 shows the distribution of the evaluation corpus
in terms of sentence length.

Note that the Books corpus contains many duplicate
common sentences, as well as many duplicate books:
according to the distribution site5 only 7,087 out of 11,038
original books in the corpus are unique. We did not
remove any further duplicates, which means there is a
strong chance of a small overlap between the test set,
and the set used to fit the trigrams.

4.3 Mixed Integer Programming

Gurobi version 6.5.0 was used to solve the MIP prob-
lems, invoked though the JuMP library [20]. During
preliminary testing we found Gurobi to be significantly
faster than the open source GLTK. Particularly for longer
sentences, we found two orders of magnitude difference
in speed for sentences of length 18. This is inline with the
more extensive evaluations of Meindl and Templ [21].
Gurobi was run under default settings, other than being
restricted to a single thread. Restricting the solver to a
single thread allowed for parallel processing.

Implementation was in the Julia programming lan-
guage [22]. The implementation, and non-summarised
results are available for download.6

5 RESULTS AND DISCUSSION

The overall results for our method (Sel. BOW+Ord.) sen-
tence generation are shown in Table 1. Also shown are
the results for just the ordering step, when the reference
bag of words provided as the input (Ref. BOW+Ord.).
The Perfect Sentences column shows the portion of the
output sentences which exactly reproduce the input. The
more forgiving BLEU Score [23] is shown to measure
how close the generated sentence is to the original. The
portion of cases for which there does exist a solution
within the constraints of the MIP ordering problem is

5. http://www.cs.toronto.edu/∼mbweb/
6. http://white.ucc.asn.au/publications/White2016SOWE2Sent/

Process Perfect
BOWs

Mean
Precision

Mean
Jaccard
Index

Sel. BOW (only) 75.6% 0.912 0.891

Table 2
The performance of the word selection step, on the

Books corpus. This table shows a subset of the results
reported by White, Togneri, Liu, et al. [7].
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Figure 4. The portion of sentences reconstructed per-
fectly by the Sel. BOW+Ord. process. Shown also is the
results on ordering only (Ref. BOW+Ord.), which orders
the reference BOWS; and the portion of BOWs perfect
from the word selection step only (Sel. BOW (only)) i.e.
the input to the ordering step.

showin in Portion Feasible. In the other cases, where
the MIP problem is unsolvable, for calculating the BLEU
score, we order the BOW based on the order resulting
from the word selection step, or in the reference case
randomly.

Table 2 shows the results reported by [7] for the Word
Selection step only (Sel. BOW (only)). The Perfect BOWs
column reports the portion of the generated BOWs
which perfectly match the reference BOWs. We also
show the Mean Precision, averaged across all cases, this
being the number of correct words generated, out of the
total number of words generated. Similarly, the Mean
Jaccard Index is shown, which is a measure of the sim-
ilarities of the BOWs, being the size of the intersection
of the generated BOW with the reference BOW, divided
by the size of their union. We present these results to
show how each step’s performance impacts the overall
system.

Both the Ref. BOW+Ord. and Sel. BOW (only) results
place an upper bound on the performance of the overall
approach (Sel. BOW+Ord.). The ordering only results
(Ref. BOW+Ord.) show the best performance that can
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be obtained in ordering with this language model, when
no mistakes are made in selection. Similarly, the selection
only results (Sel. BOW (only)) are bounding as no matter
how good the word ordering method is, it cannot recre-
ate perfectly accurate sentences using incorrect words.

It can be noted that Ref. BOW+Ord. and
Sel. BOW+Ord. were significantly more accurate
than the best results reported by Horvat and Byrne [8].
We attribute this to Horvat and Byrne preprocessing the
evaluation corpora to remove the easier sentences with
4 or less words. We did not remove short sentences
from the corpus. The performance on these sentences
was particularly high, thus improving the overall results
on ordering.

The overall resynthesis (Sel. BOW+Ord.) degrades as
the sentence length increases as shown in Figure 4. It
can be seen from the figure that sentence length is a
critical factor in the performance. The performance drop
is largely from the complexity in the ordering step when
faced with long sentences. This is evident in Figure 4,
as performance degrades at almost the same rate even
when using the perfect BOW (compare Ref. BOW+Ord.
vs Sel. BOW+Ord.); rather than being degraded by the
failures in the word selection step (Sel. BOW (only)).
We can conclude that sentences with word selection
failures (Sel. BOW (only)) are also generally sentences
which would have word ordering failures even with
perfect BOW (Ref. BOW+Ord.). Thus improving word
selection, without also improving ordering, would not
have improved the overall results significantly.

From observing examples of the output of method
we note that normally mistakes made in the word se-
lection step result in an unorderable sentence. Failures
in selection are likely to result in a BOW that cannot
be grammatically combined e.g. missing conjunctions.
This results in no feasible solutions to the word ordering
problem.

Our method considers the word selection and word
ordering as separate steps. This means that unorderable
words can be selected if there is an error in the first
step. This is not a problem for the existing methods of
Iyyer, Boyd-Graber, and Daumé III [2] and of Bowman,
Vilnis, Vinyals, et al. [3]. Iyyer, Boyd-Graber, and Daumé
III [2] guarantees grammatical correctness, as the syntax
tree must be provided as an input for resynthesis – thus
key ordering information is indirectly provided and it
is generated into. Bowman, Vilnis, Vinyals, et al. [3] on
the other hand integrates the language model with the
sentence embedding so that every point in the vector
space includes information about word order. In general,
it seems clear that incorporating knowledge about order,
or at least co-occurrence probabilities, should be certain
to improve the selection step. Even so the current simple
approach has a strong capacity to get back the input,
without such enhancement.

6 CONCLUSION

A method was presented for regenerating sentences,
from the sum of a sentence’s word embeddings. It uses
sums of existing word embeddings, which are machine
learnt to represent the sentences, and then generates
natural language output, using only the embeddings and
a simple trigram language model. Unlike existing meth-
ods, the generation method itself is deterministic rather
than being based on machine-learnt encoder/decoder
models. The method involved two steps, word selection
and word ordering.

The first part is the word selection problem, of going
from the sum of embeddings to a bag of words. To
solve this we utilised the method presented in White,
Togneri, Liu, et al. [7]. Their greedy algorithm was found
to perform well at regenerating a BOW. The second
part was word ordering. This was done through a MIP
bases reformulation of the work of the graph-based work
of Horvat and Byrne [8]. It was demonstrated that a
probabilistic language model can be used to order the
bag of words output to regenerate the original sentences.
While it is certainly impossible to do this perfectly in
every case, for many sentences the most likely ordering
is correct.

From a theoretical basis the resolvability of the selec-
tion problem, presented by White, Togneri, Liu, et al.
[7], shows that adding up the word embeddings does
preserve the information on which words were used;
particularly for higher dimensional embeddings. This
shows clearly that collisions do not occur (at least with
frequency) such that two unrelated sentences do not
end up with the same SOWE representation. This work
extends that by considering if the order can be recovered
based on simple corpus statistics. Its recoverability is
dependent, in part, on how frequent sentences with the
same words in different order are in the corpus language
– if they were very frequent then non-order preserving,
non-compositional representations like SOWE would be
poor at capturing meaning, and the ordering task would
generally fail. As the method we presented generally
does succeed, we can conclude that word order ambi-
guity is not a dominating problem. This supports the
use of simple approaches like SOWE as a meaning
representation for sentences – at least for sufficiently
short sentences.

The technique was only evaluated on sentences with
up to 18 words (inclusive), due to computational time
limitations. Both accuracy and running time worsens ex-
ponentially as sentence length increases. With that said,
short sentences are sufficient for many practical uses.
For longer sentences, it is questionable as to the extent
the information used is preserved by the SOWE repre-
sentation – given they tend to have large substructures
(like this one) compositional models are expected to be
more useful. In evaluating such future representations,
the method we present here is a useful baseline.
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