
Generating Bags of Words from the Sums of
their Word Embeddings

Lyndon White, Roberto Togneri, Wei Liu, and Mohammed Bennamoun

The University of Western Australia
35 Stirling Highway, Crawley, Western Australia

lyndon.white@research.uwa.edu.au, roberto.togneri@uwa.edu.au,
wei.liu@uwa.edu.au, mohammed.bennamoun@uwa.edu.au

Abstract. Many methods have been proposed to generate sentence vec-
tor representations, such as recursive neural networks, latent distributed
memory models, and the simple sum of word embeddings (SOWE). How-
ever, very few methods demonstrate the ability to reverse the process
– recovering sentences from sentence embeddings. Amongst the many
sentence embeddings, SOWE has been shown to maintain semantic mean-
ing, so in this paper we introduce a method for moving from the SOWE
representations back to the bag of words (BOW) for the original sen-
tences. This is a part way step towards recovering the whole sentence and
has useful theoretical and practical applications of its own. This is done
using a greedy algorithm to convert the vector to a bag of words. To our
knowledge this is the first such work. It demonstrates qualitatively the
ability to recreate the words from a large corpus based on its sentence
embeddings.
As well as practical applications for allowing classical information retrieval
methods to be combined with more recent methods using the sums of
word embeddings, the success of this method has theoretical implications
on the degree of information maintained by the sum of embeddings
representation. This lends some credence to the consideration of the
SOWE as a dimensionality reduced, and meaning enhanced, data manifold
for the bag of words.

1 Introduction

The task being tackled here is the resynthesis of bags of words (BOW) from
sentence embedding representations. In particular the generation of BOW from
vectors based on the sum of the sentence’s constituent words’ embeddings (SOWE).
To the knowledge of the authors, this task has not been attempted before.

The motivations for this task are the same as in the related area of sentence
generation. Dinu and Baroni (2014) observe that given a sentence has a given
meaning, and the vector encodes the same meaning, then it must be possible
to translate in both directions between the natural language and the vector
representation. A sub-step of this task is the unordered case (BOW), rather than
true sentences, which we tackle in this paper. The success of the implementation

does indicates the validity of this dual space theory, for the representations
considered (where order is neglected). There are also some potential practical
applications of such an implementation, often ranging around common vector
space representations.

Given suitable bidirectional methods for converting between sentence embed-
dings and bags of words, the sentence embedding space can be employed as a
lingua franca for translation between various forms of information – though with
loss of word order information. The most obvious of which is literal translation
between different natural languages; however the use extends beyond this.

Several approaches have been developed for representing images and sentences
in a common vector space. This is then used to select a suitable caption from
a list of candidates (Farhadi et al. 2010; Socher et al. 2014). Similar methods,
creating a common space between images and SOWE of the keywords describing
them, could be used to generate keyword descriptions using BOW resynthesis –
without any need for a list. This would allows classical word-based information
retrieval and indexing techniques to be applied to images.

A similar use is the replacement of vector based extractive summarisation
(Kågebäck et al. 2014; Yogatama et al. 2015), with keyword based abstractive
summarisation, which is the generation of a keyword summary from a document.
The promising use of SOWE generation for all these applications is to have a
separate model trained to take the source information (e.g. a picture for image
description, or a cluster of sentences for abstract summarisation) as its input and
train it to output a vector which is close to a target SOWE vector. This output
can then be used to generate the sentence.

The method proposed in this paper has an input of a sum of word embeddings
(SOWE) as the sentence embedding, and outputs the bag of word (BOW) which it
corresponds to. The input is a vector for example s̃ = [−0.79, 1.27, 0.28, ...,−1.29],
which approximates a SOWE vector, and outputs a BOW for example {,: 1,
best:1, it:2, of:2, the:2, times:2, was:2, worst:1} – the BOW for the
opening line of Dickens’ Tale of Two Cities. Our method for BOW generation is
shown in Figure 1, note that it takes as input only a word embedding vocabulary
(V) and the vector (s̃) to generate the BOW (c̃).

Target SOWE
Sentence Vector

(s̃)
Vector

Selection

Vocabulary of
Word Vectors

(V)

Bag of Words
(c̃)

Fig. 1: The process for the regenerating BOW from SOWE sentence embeddings.

The rest of the paper is organized into the following sections. Section 2
introduces the area, discussing in general sentence models, and prior work on
generation. Section 3 explains the problem in detail and our algorithm for solving
it. Section 4 described the settings used for evaluation. Section 5 discusses the
results of this evaluation. The paper presents its conclusions in Section 6, including
a discussion of future work.

2 Background

The current state of the art for full sentence generation from sentence embeddings
are the works of Iyyer et al. 2014 and Bowman et al. 2015. Both these advance
beyond the earlier work of Dinu and Baroni 2014 which is only theorised to extend
beyond short phrases. Iyyer et al. and Bowman et al. produce full sentences.
These sentences are shown by examples to be loosely similar in meaning and
structure to the original sentences. Neither works has produced quantitative
evaluations, making it hard to determine between them. However, when applied
to the various quantitative examples shown in both works neither is able to
consistently reproduce exact matches. This motivates investigation on a simpler
unordered task, converting a sum of word embeddings to bag of words, as
investigated in this paper.

Bag of words is a classical natural language processing method for representing
a text, sentence or document, commonly used in information retrieval. The text
is represented as a multiset (or bag), this is an unordered count of how often
each word occurs.

Word embeddings are vector representations of words. They have been shown
to encode important syntactic and semantic properties. There are many different
types of word embeddings (Yin and Schütze 2015). Two of the more notable
are the SkipGrams of Mikolov et al. (2013a,b) and the Global Vector word
representations (GloVe) of Pennington et al. (2014). Beyond word representations
are sentence embeddings.

Sentence embeddings represent sentences, which are often derived from word
embeddings. Like word embeddings they can capture semantic and syntactic
features. Sentence vector creation methods include the works of Le and Mikolov
(2014) and Socher (2014). Far simpler than those methods, is the sum of word
embeddings (SOWE). SOWE, like BOW, draws significant criticism for not
only disregarding sentence structure, but disregarding word order entirely when
producing the sentence embedding. However, this weaknesses, may be offset by
the improved discrimination allowed through words directly affecting the sentence
embedding. It avoids the potential information loss through the indirection of
more complex methods. Recent results suggest that this may allow it to be
comparable overall to the more linguistically consistent embeddings when it
comes to representing meaning.

White et al. (2015) found that when classifying real-world sentences into
groups of semantically equivalent paraphrases, that using SOWE as the input
resulted in very accurate classifications. In that work White et al. partitioned
the sentences into groups of paraphrases, then evaluated how well a linear SVM
could classify unseen sentences into the class given by its meaning. They used this
to evaluate a variety of different sentence embeddings techniques. They found
that the classification accuracy when using SOWE as the input performed very
similarly to the best performing methods – less than 0.6% worse on the harder
task. From this they concluded that the mapping from the space of sentence
meaning to the vector space of the SOWE, resulted in sentences with the same
meaning going to distinct areas of the vector space.

Ritter et al. (2015) presented a similar task on spacial-positional meaning,
which used carefully constructed artificial data, for which the meanings of the
words interacted non-simply – thus theoretically favouring the more complex
sentence embeddings. In their evaluation the task was classification with a Naïve
Bayes classifier into one of five categories of different spatial relationships. The
best of the SOWE models they evaluated, outperformed the next best model by
over 5%. These results suggest this simple method is still worth consideration
for many sentence embedding representation based tasks. SOWE is therefore the
basis of the work presented in this paper.

3 The Vector Selection Problem

At the core of this problem is what we call the Vector Selection Problem, to
select word embedding vectors which sum to be closest to the target SOWE (the
input). The word embeddings come from a known vector vocabulary, and are to
be selected with potential repetition. Selecting the vectors equates to selecting the
words, because there is a one to one correspondence between the word embedding
vectors and their words. This relies on no two words having exactly the same
embeddings – which is true for all current word embedding techniques.

Definition 1. The Vector Selection Problem is defined on (V, s̃, d)
for a finite vocabulary of vectors V, V ⊂ Rn, a target sentence embedding s̃,
s̃ ∈ Rn, and any distance metric d, by:

argmin{
∀c̃∈N|V|

0

} d(s̃,
∑
x̃j∈V

x̃j cj)

x̃j is the vector embedding for the jth word in the vocabulary x̃j ∈ V and cj
is the jth element of the count vector c̃ being optimised – it is the count of
how many times the xj occurs in approximation to the sum being assessed; and
correspondingly it is the count of how many times the jth word from the vocabulary
occurs in the bag of words. The selection problem is thus finding the right words
with the right multiplicity, such that the sum of their vectors is as close to the
input target vector, s̃, as possible.

3.1 NP-Hard Proof

The vector selection problem is NP-Hard. It is possible to reduce from any given
instance of a subset sum problem to a vector selection problem. The subset
sum problem is NP-complete (Karp 1972). It is defined: for some set of integers
(S ⊂ Z), does there exist a subset (L ⊆ S) which sums to zero (0 =

∑
li∈L li).

A suitable metric, target vector and vocabulary of vectors corresponding to the
elements S can be defined by a bijection; such that solving the vector selection
problem will give the subset of vectors corresponding to a subset of S with the
smallest sum; which if zero indicates that the subset sum does exists, and if
nonzero indicates that no such subset (L) exists. A fully detailed proof of the

reduction from subset sum to the vector selection problem can be found on the
first author’s website. 1

3.2 Selection Algorithm

The algorithm proposed here to solve the selection problem is a greedy iterative
process. It is a fully deterministic method, requiring no training, beyond having
the word embedding mapping provided. In each iteration, first a greedy search
(Greedy Addition) for a path to the targeted sum point s̃ is done, followed by
correction through substitution (n-Substitution). This process is repeated until
no change is made to the path. The majority of the selection is done in the
Greedy Addition step, while the n-substitution handles fine tuning.

Greedy Addition The greedy addition phase is characterised by adding the
best vector to the bag at each step (see the pseudo-code in Algorithm 1). At
each step, all the vectors in the current bag are summed, and then each vector in
the vocabulary is added in turn to evaluate the new distance the new bag would
have from the target, the bag which sums to be closest to the target becomes
the current solution. This continues until there is no option to add any of the
vectors without moving the sum away from the target. There is no bound on the
size of the bag of vector (i.e. the length of the sentence) in this process, other
than the greedy restriction against adding more vectors that do not get closer to
the solution.

Greedy Addition works surprisingly well on its own, but it is enhanced with
a fine tuning step, n-substitution, to decrease its greediness.

n-Substitution We define a new substitution based method for fine tuning
solutions called n-substitution. It can be described as considering all subbags
containing up to n elements, consider replacing them with a new sub-bag of up
that size n from the vocabulary, including none at all, if that would result in the
overall bag getting closer to the target s̃.

The reasoning behind performing the n-substitution is to correct for greedy
mistakes. Consider the 1 dimensional case where V = 24, 25, 100 and s̃ = 148,
d(x, y) = |x− y|. Greedy addition would give bagc = [100, 25, 24] for a distance of
1, but a perfect solution is bagc = [100, 24, 24] which is found using 1-substitution.
This substitution method can be considered as re-evaluating past decisions in
light of the future decisions. In this way it lessens the greed of the addition step.

The n-substitution phase has time complexity of O(
(
C
n

)
V n), for C =

∑
c̃ i.e.

current cardinality of bagc. With large vocabularies it is only practical to consider
1-substitution. With the Brown Corpus, where |V| u 40, 000, it was found that
1-substitution provides a significant improvement over greedy addition alone. On
a smaller trial corpora, where |V| u 1, 000, 2-substitution was used and found to
give further improvement. In general it is possible to initially use 1-substitution,
1 http://white.ucc.asn.au/publications/White2015BOWgen/

http://white.ucc.asn.au/publications/White2015BOWgen/

Data: the metric d
the target sum s̃
the vocabulary of vectors V
the current best bag of vectors bagc: initially ∅
Result: the modified bagc which sum to be as close as greedy search can get to

the target s̃, under the metric d
begin

t̃←−
∑

xi∈bagc

xi

while true do
x̃∗ ←− argmin

xj∈V
d(s̃, t̃+ x̃j) /* exhaustive search of V */

if d(s̃, t̃+ x̃∗) < d(s̃, t̃) then
t̃←− t̃+ x̃∗ bagc ←− bagc ∪ {x̃∗}

else
return bagc /* No further improving step found */

end
end

end
Algorithm 1: Greedy Addition. In practical implementation, the bag of
vectors can be represented as list of indices into columns of the embedding
vocabulary matrix, and efficient matrix summation methods can be used.

and if the overall algorithm converges to a poor solution (given the distance to
the target is always known), then the selection algorithm can be retried from the
converged solution, using 2-substitution and so forth. As n increases the greed
overall decreases; at the limit the selection is not greedy at all, but is rather an
exhaustive search.

4 Experimental Setup and Evaluations

4.1 Word Embeddings

GloVe representations of words (Pennington et al. 2014) are used in our evalua-
tions. There are many varieties of word embeddings which work with our algo-
rithm. GloVe was chosen simply because of the availability of a large pre-trained
vocabulary of vectors. The representations used for evaluation were pretrained
on 2014 Wikipedia and Gigaword 52. Preliminary results with SkipGrams from
Mikolov et al. (2013a) suggested similar performance.

4.2 Corpora

The evaluation was performed on the Brown Corpus (Francis and Kucera 1979)
and on a subset of the Books Corpus (Zhu et al. 2015). The Brown Corpus was
sourced with samples from a 500 fictional and non-fictional works from 1961. The
2 Kindly made available online at http://nlp.stanford.edu/projects/glove/

http://nlp.stanford.edu/projects/glove/

Books Corpus was sourced from 11,038 unpublished novels. The Books Corpus is
extremely large, containing roughly 74 million sentences. After preprocessing we
randomly selected 0.1% of these for evaluation.

For simplicity of evaluation, sentences containing words not found in the
pretrained vector vocabulary are excluded. These were generally rare mis-spellings
and unique numbers (such as serial numbers). Similarly, words which are not
used in the corpus are excluded from the vector vocabulary.

After the preprocessing the final corpora can be described as follows. The
Brown Corpus has 42,004 sentences and a vocabulary of 40,485 words. Where-as,
the Books Corpus has 66,464 sentences, and a vocabulary of 178,694 words. The
vocabulary sizes are beyond what is suggested as necessary for most uses (Nation
2006). These corpora remain sufficiently large and complex to quantitatively
evaluate the algorithm.

4.3 Vector Selection

The Euclidean metric was used to measure how close potential solutions were
to the target vector. The choice of distance metric controls the ranking of each
vector by how close (or not) it brings the the partial sum to the target SOWE
during the greedy selection process. Preliminary results on one-tenth of the Books
Corpus used in the main evaluation found the Manhattan distance performed
marginally worse than the Euclidean metric and took significantly longer to
converge.

The commonly used cosine similarity, or the linked angular distance, have an
issue of zero distances between distinct points – making them not true distance
metrics. For example the SOWE of “a can can can a can” has a zero distance under
those measures to the SOWE for “a can can”.3 That example is a pathological,
though valid sentence fragment. True metrics such as the Euclidean metric do not
have this problem. Further investigation may find other better distance metrics
for this step.

The Julia programming language (Bezanson et al. 2014), was used to create
the implementation of the method, and the evaluation scripts for the results
presented in the next section. This implementation, evaluation scripts, and the
raw results are available online.4. Evaluation was carried out in parallel on a 12
core virtual machine, with 45Gb of RAM. Sufficient RAM is required to load the
entire vector vocabulary in memory.

5 Results and Discussion

Table 1 shows examples of the output. Eight sentences which were used for
demonstration of sentence generation in Bowman et al. (2015) and Iyyer et al.
3 The same is true for any number of repetitions of the word buffalo – each of which

forms a valid sentence as noted in Tymoczko et al. (1995)
4 http://white.ucc.asn.au/publications/White2015BOWgen/

http://white.ucc.asn.au/publications/White2015BOWgen/

Table 1: Examples of the BOW Produced by our method using the Books
Corpus vocabulary, compared to the Correct BOW from the reference sentences.
The P and C columns show the the number of occurrences of each word in
the Produced and Correct bags of words, respectively. Bolded lines highlight
mistakes. Examples a-e were sourced from Iyyer et al. (2014), Examples f-h from
Bowman et al. (2015). Note that in example a, the “__..._(n)” represents n
repeated underscores (without spaces).

(a) ralph waldo
emerson dismissed
this poet as the jin-
gle man and james
russell lowell called
him three-fifths ge-
nius and two-fifths
sheer fudge

Word P C

2008 1 0
__..._(13) 1 0
__..._(34) 1 0
__..._(44) 1 0
“ 1 0
aldrick 1 0
and 2 2
as 0 1
both 1 0
called 0 1
dismissed 1 1
emerson 1 1
fudge 1 1
genius 1 1
hapless 1 0
him 1 1
hirsute 1 0
james 1 1
jingle 1 1
known 1 0
lowell 1 1
man 0 1
poet 1 1
ralph 1 1
russell 1 1
sheer 1 1
the 1 1
this 1 1
three-fifths 1 1
two-fifths 1 1
waldo 1 1
was 1 0

(b) thus she
leaves her hus-
band and child
for aleksei vron-
sky but all ends
sadly when she
leaps in front of
a train

Word P C

a 1 1
aleksei 1 1
all 1 1
and 1 1
but 1 1
child 1 1
ends 1 1
for 1 1
front 1 1
her 1 1
husband 1 1
in 1 1
leaps 1 1
leaves 1 1
of 1 1
sadly 1 1
she 2 2
thus 1 1
train 1 1
vronsky 1 1
when 1 1

(c) name this
1922 novel
about leopold
bloom written
by james joyce

Word P C

1922 1 1
about 1 1
bloom 1 1
by 1 1
james 1 1
joyce 1 1
leopold 1 1
name 1 1
novel 1 1
this 1 1
written 1 1

(d) this is the ba-
sis of a comedy of
manners first per-
formed in 1892

Word P C

1892 1 1
a 1 1
basis 1 1
comedy 1 1
first 1 1
in 1 1
is 1 1
manners 1 1
of 2 2
performed 1 1
the 1 1
this 1 1

(e) in a third
novel a sailor
abandons the
patna and meets
marlow who in
another novel
meets kurtz in
the congo

Word P C

a 2 2
abandons 1 1
and 1 1
another 1 1
congo 1 1
in 3 3
kurtz 1 1
marlow 1 1
meets 2 2
novel 2 2
patna 1 1
sailor 1 1
the 2 2
third 1 1
who 1 1

(f) how are
you doing ?

Word P C

’re 1 0
? 1 1
are 0 1
do 1 0
doing 0 1
how 1 1
well 1 0
you 0 1

(g) we looked
out at the set-
ting sun .

Word P C

. 1 1
at 1 1
looked 1 1
out 1 1
setting 1 1
sun 1 1
the 1 1
we 1 1

(h) i went to
the kitchen .

Word P C

. 1 1
i 1 1
kitchen 1 1
the 1 1
to 1 1
went 1 1

Table 2: The performance of the BOW generation method. Note the final line is
for the Books Corpus, where-as the preceding are or the Brown Corpus.

Corpus
Embedding

Dimen-
sions

Portion
Perfect

Mean
Jaccard
Score

Mean
Precision

Mean
Recall

Mean F1
Score

Brown 50 6.3% 0.175 0.242 0.274 0.265
Brown 100 19.4% 0.374 0.440 0.530 0.477
Brown 200 44.7% 0.639 0.695 0.753 0.720
Brown 300 70.4% 0.831 0.864 0.891 0.876
Books 300 75.6% 0.891 0.912 0.937 0.923

0 20 40 60 80 100 120 140 160 180
0

0.5

1

Ground Truth Sentence Length

M
ea

n
Ja

cc
ar

d
In

de
x 50D Brown

100D Brown
200D Brown
300D Brown
300D Books

Fig. 2: The mean Jaccard index achieved during the word selection step, shown
against the ground truth length of the sentence. Note that the vast majority of
sentences are in the far left end of the plot. The diminishing samples are also the
cause of the roughness, as the sentence length increases.

(2014) have the BOW generation results shown. All examples except (a) and
(f) are perfect. Example (f) is interesting as it seems that the contraction token
’re was substituted for are, and do for doing. Inspections of the execution logs
for running on the examples show that this was a greedy mistake that would be
corrected using 2-substitution. Example a has many more mistakes.

The mistakes in Example (a) seem to be related to unusual nonword tokens,
such as the three tokens with 13, 34, and 44 repetitions of the underscore
character. These tokens appear in the very large Books corpus, and in the
Wikipedia/Gigaword pretraining data used for word embeddings, but are generally
devoid of meaning and are used as structural elements for formatting. We theorise
that because of their rarity in the pre-training data they are assigned an unusual
word-embedding by GloVE. There occurrence in this example suggests that better
results may be obtained by pruning the vocabulary. Either manually, or via a
minimum uni-gram frequency requirement. The examples overall highlight the
generally high performance of the method, and evaluations on the full corpora
confirm this.

Table 2 shows the quantitative performance of our method across both corpora.
Five measures are reported. The most clear is the portion of exact matches –
this is how often out of all the trials the method produced the exact correct
bag of words. The remaining measures are all means across all the values of the
measures in each trial. The Jaccard index is the portion of overlap between the
reference BOW, and the output BOW – it is the cardinality of the intersection
divided by that of the union. The precision is the portion of the output words
that were correct; and the recall is the portion of all correct words which were
output. For precision and recall word repetitions were treated as distinct. The
F1 score is the harmonic mean of precision and recall. The recall is higher than
the precision, indicating that the method is more prone to producing additional
incorrect words (lowering the precision), than to missing words out (which would
lower the recall).

Initial investigation focused on the relationship between the number of dimen-
sions in the word embedding and the performance. This was carried out on the
smaller Brown corpus. Results confirmed the expectation that higher dimensional
embeddings allow for better generation of words. The best performing embedding
size (i.e. the largest) was then used to evaluate success on the Books Corpus.
The increased accuracy when using higher dimensionality embeddings remains
true at all sentence lengths.

As can be seen in Figure 2 sentence length is a very significant factor in the
performance of our method. As the sentences increase in length, the number of
mistakes increases. However, at higher embedding dimensionality the accuracy
for most sentences is high. This is because most sentences are short. The third
quartile on sentence length is 25 words for Brown, and 17 for the Books Corpus.
This distribution difference is also responsible for the apparent better results on
the Books Corpus, than on the Brown corpus.

While the results shown in Table 2 suggest that on the Books corpus the
algorithm performs better, this is due to its much shorter average sentence
length. When taken as a function of the sentence length, as shown in Figure 2,
performance on the Books Corpus is worse than on the Brown Corpus. It can
be concluded from this observation that increasing the size of the vocabulary
does decrease success in BOW regeneration. Books Corpus vocabulary being over
four times larger, while the other factors remained the same, resulted in lower
performance. However, when taking all three factors into account, we note that
increasing the vocabulary size has significantly less impact than increasing the
sentence length or the embedding dimensionality on the performance.

6 Conclusion

A method was presented for how to regenerate a bag of words, from the sum of a
sentence’s word embeddings. This problem is NP-Hard. A greedy algorithm was
found to perform well at the task, particularly for shorter sentences when high
dimensional embeddings are used.

Resynthesis degraded as sentence length increased, but remained strong with
higher dimensional models up to reasonable length. It also decreased as the
vocabulary size increased, but significantly less so. The BOW generation method
is functional with usefully large sentences and vocabulary.

From a theoretical basis the resolvability of the selection problem shows
that adding up the word embeddings does preserve the information on which
words were used; particularly for higher dimensional embeddings. This shows
that collisions do not occur (at least not frequently) such that two unrelated
sentences do not end up with the same SOWE representation.

This work did not investigate the performance under noisy input SOWEs –
which occur in many potential applications. Noise may cause the input to better
align with an unusual sum of word embeddings, than with its true value. For
example it may be shifted to be very close a sentence embedding that is the
sum of several hundred word embeddings. Investigating, and solving this may
be required for applied uses of any technique that solves the vector selection
problem.

More generally, future work in this area would be to use a stochastic language
model to suggest suitable orderings for the bags of words. While this would not
guarantee correct ordering every-time, we speculate that it could be used to find
reasonable approximations often. Thus allowing this bag of words generation
method to be used for full sentence generation, opening up a much wider range
of applications.

Acknowledgements This research is supported by the Australian Postgraduate
Award, and partially funded by Australian Research Council grants DP150102405
and LP110100050. Computational resources were provided by the National
eResearch Collaboration Tools and Resources project (Nectar).

References

Bezanson, Jeff et al. (2014). “Julia: A Fresh Approach to Numerical Computing”.
In: arXiv: 1411.1607 [cs.MS].

Bowman, Samuel R et al. (2015). “Generating Sentences from a Continuous
Space”. In: arXiv preprint arXiv:1511.06349.

Dinu, Georgiana and Marco Baroni (2014). “How to make words with vec-
tors: Phrase generation in distributional semantics”. In: Proceedings of ACL,
pp. 624–633.

Farhadi, Ali et al. (2010). “Every picture tells a story: Generating sentences from
images”. In: Computer Vision–ECCV 2010. Springer, pp. 15–29.

Francis, W Nelson and Henry Kucera (1979). “Brown corpus manual”. In: Brown
University.

Iyyer, Mohit, Jordan Boyd-Graber, and Hal Daumé III (2014). “Generating
Sentences from Semantic Vector Space Representations”. In: NIPS Workshop
on Learning Semantics.

Kågebäck, Mikael et al. (2014). “Extractive summarization using continuous
vector space models”. In: Proceedings of the 2nd Workshop on Continuous
Vector Space Models and their Compositionality (CVSC)@ EACL, pp. 31–39.

Karp, Richard M (1972). Reducibility among combinatorial problems. Springer.
Le, Quoc and Tomas Mikolov (2014). “Distributed Representations of Sentences

and Documents”. In: Proceedings of the 31st International Conference on
Machine Learning (ICML-14), pp. 1188–1196.

Mikolov, Tomas et al. (2013a). “Efficient estimation of word representations in
vector space”. In: arXiv preprint arXiv:1301.3781.

Mikolov, Tomas, Wen-tau Yih, and Geoffrey Zweig (2013b). “Linguistic Regulari-
ties in Continuous Space Word Representations.” In: HLT-NAACL, pp. 746–
751.

Nation, I (2006). “How large a vocabulary is needed for reading and listening?”
In: Canadian Modern Language Review 63.1, pp. 59–82.

Pennington, Jeffrey, Richard Socher, and Christopher D. Manning (2014). “GloVe:
Global Vectors for Word Representation”. In: Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP 2014),
pp. 1532–1543.

Ritter, Samuel et al. (2015). “Leveraging Preposition Ambiguity to Assess Compo-
sitional Distributional Models of Semantics”. In: The Fourth Joint Conference
on Lexical and Computational Semantics.

Socher, Richard (2014). “Recursive Deep Learning for Natural Language Pro-
cessing and Computer Vision”. PhD thesis. Stanford University.

Socher, Richard et al. (2014). “Grounded compositional semantics for finding
and describing images with sentences”. In: Transactions of the Association
for Computational Linguistics 2, pp. 207–218.

Tymoczko, T., J. Henle, and J.M. Henle (1995). Sweet Reason: A Field Guide
to Modern Logic. Textbooks in Mathematical Sciences. Key College. isbn:
9780387989303.

White, Lyndon et al. (2015). “How Well Sentence Embeddings Capture Mean-
ing”. In: Proceedings of the 20th Australasian Document Computing Symposium.
ADCS ’15. Parramatta, NSW, Australia: ACM, 9:1–9:8. isbn: 978-1-4503-4040-3.
doi: 10.1145/2838931.2838932.

Yin, Wenpeng and Hinrich Schütze (2015). “Learning Word Meta-Embeddings
by Using Ensembles of Embedding Sets”. In: eprint: 1508.04257.

Yogatama, Dani, Fei Liu, and Noah A Smith (2015). “Extractive Summarization
by Maximizing Semantic Volume”. In: Conference on Empirical Methods in
Natural Language Processing.

Zhu, Yukun et al. (2015). “Aligning Books and Movies: Towards Story-like Visual
Explanations by Watching Movies and Reading Books”. In: arXiv preprint
arXiv:1506.06724.

	Generating Bags of Words from the Sums of their Word Embeddings

