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ABSTRACT
Several approaches for embedding a sentence into a vector
space have been developed. However, it is unclear to what
extent the sentence’s position in the vector space reflects its
semantic meaning, rather than other factors such as syntac-
tic structure. Depending on the model used for the embed-
dings this will vary – different models are suited for different
down-stream applications. For applications such as machine
translation and automated summarization, it is highly desir-
able to have semantic meaning encoded in the embedding.
We consider this to be the quality of semantic localization
for the model – how well the sentences’ meanings coincides
with their embedding’s position in vector space. Currently
the semantic localization is assessed indirectly through prac-
tical benchmarks for specific applications.

In this paper, we ground the semantic localization prob-
lem through a semantic classification task. The task is to
classify sentences according to their meaning. A SVM with
a linear kernel is used to perform the classification using the
sentence vectors as its input. The sentences from subsets of
two corpora, the Microsoft Research Paraphrase corpus and
the Opinosis corpus, were partitioned according to their se-
mantic equivalence. These partitions give the target classes
for the classification task. Several existing models, includ-
ing URAE, PV–DM and PV–DBOW, were assessed against
a bag of words benchmark.

General Terms
Measurement, Performance, Experimentation

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing—Abstracting methods, Linguistic pro-
cessing ; I.2.7 [Artificial Intelligence]: Natural Language
Processing—Language parsing and understanding
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1. INTRODUCTION
Sentence embeddings are often referred to as semantic vec-

tor space representations [7]. Embedding the meaning of a
sentence into a vector space is expected to be very useful
for natural language tasks. Vector representation of natu-
ral languages enables discourse analysis to take advantage
of the array of tools available for computation in vector
spaces. However, the embeddings of a sentence may encode
a number of factors including semantic meaning, syntactic
structure and topic. Since many of these embeddings are
learned unsupervised on textual corpora using various mod-
els with different training objectives, it is not entirely clear
the emphasis placed on each factor in the encoding. For
applications where encoding semantic meaning is particu-
larly desirable, such as machine translation and automatic
summarization, it is crucial to be able to assess how well
the embeddings capture the sentence’s semantics. In other
words, for successful application to these areas it is required
that the embeddings generated by the models correctly en-
code meaning such that sentences with the same meaning
are co-located in the vector space, and sentences with differ-
ing meanings are further away. However, few current models
are directly trained to optimize for this criteria.

Currently sentence embeddings are often generated as a
byproduct of unsupervised, or semi-supervised, tasks. These
tasks include: word prediction [10]; recreation of input, as in
the auto-encoders of [22, 19] and [7]; and syntactic structural
classification [18, 21]. As a result the vector representations
of the input sentences learned by these models are tuned
towards the chosen optimization task. When employing the
embeddings produced as features for other tasks, the infor-
mation captured by the embeddings often proved to be very
useful: e.g. approaching or exceeding previous state-of-the-
art results, in sentiment analysis [22, 20, 10] and paraphrase
detection [19]. However these practical applications do not
directly show how well meaning is captured by the embed-
dings.

This paper provides a new method to assess how well the
models are capturing semantic information. A strict defini-
tion for the semantic equivalence of sentences is: that each
sentence shall entail the other. Such mutually entailing sen-
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tences are called paraphrases. In this paper we propose to
use paraphrases to assess how well the true semantic space
aligns with the vector space the models embed into. It thus
assesses whether projecting a sentence via the models in to
the vector space preserves meaning.

The evaluation corpora were prepared by grouping para-
phrases from the Microsoft Research Paraphrase (MSRP) [3]
and Opinosis [5] corpora. A semantic classification task was
defined which assesses if the model’s embeddings could be
used to correctly classify sentences as belonging to the para-
phrase group with semantically equivalent sentences. Ensur-
ing that sentences of common meaning, but differing form
are located in vector space together, is a challenging task
and shows a model’s semantic encoding strength. This as-
sessment, together with out recent work in the area, allows
for a better understanding of how these models work, and
suggest new directions for the development in this area.

The assessment proposed in this paper adds to the recent
work on semantic evaluation methods, such as the work of
Gershamn and Tenenbaum [6] and of Ritter et. al. [17]. In
particular, the real-world corpus based assessment in this
paper is highly complementary to the structured artificial
corpus based assessment of Ritter et. al. These methods
are discussed in more detail in the next section.

The rest of the paper is organized into the following sec-
tions. Section §2 discusses the existing models being as-
sessed, the traditional assessment methods, and the afore-
mentioned more recent semantic correctness based assess-
ments. Section §3 describes the processes by which the mod-
els are evaluated using our new method, and the parameters
used in the evaluation. Section §4 continues into more de-
tails on the development of the evaluation corpora for the
semantic classification evaluation task. Section §5 details
the results from evaluating the models and discusses the im-
plications for their semantic consistency. Section §6 closes
the paper and suggests new directions for development.

2. BACKGROUND

2.1 Models
Three well known sentence embedding methods are eval-

uated in this work. The compositional distributed model of
the Unfoldering Recussive Autoencoder (URAE) by Socher
et. al. [19]; and the two word content predictive models, Dis-
tributed Memory (PV-DM) and Distributed Bag of Words
by Le and Mikolov [10]. In addition to these advanced sen-
tence embedding models, a simple average of word embed-
dings, from Mikolov et. al. [13], is also assessed. These
models and their variant forms have been applied to a num-
ber of natural language processing tasks in the past, as de-
tailed in the subsequent sections, but not to a real-sentence
semantic classification task as described here.

2.1.1 Unfolding Recursive Auto-Encoder (URAE)
The Unfolding Recursive Autoencoder (URAE) [19] is an

autoencoder based method. It functions by recursively using
a single layer feedforward neural-network to combine embed-
ded representations, following the parse tree. Its optimiza-
tion target is to be be able to reverse (unfold) the merges
and produce the original sentence. The central folding layer
– where the whole sentence is collapsed to a single embed-
ding vector – is the sentence representation.

2.1.2 PV-DM
The Distributed Memory Paragraph Vectors (PV-DM)

[10] method is based on an extension of the Continuous Bag-
of-Words word-embedding model [12]. It is trained using a
sliding window of words to predict the next word. The soft-
max predictor network is fed a word-embedding for each
word in the window, plus an additional sentence embedding
vector which is reused for all words in the sentence – called
the paragraph vector in [10]. These input embeddings can
be concatenated or averaged; in the results below they were
concatenated. During training both word and sentence vec-
tors are allowed to vary, in evaluation (i.e. inference), the
word vectors are locked and the sentence vector is trained
until convergence on the prediction task occurs.

2.1.3 PV-DBOW
Distributed Bag of Words Paragraph Vectors (PV-DBOW)

[10], is based on the Skip-gram model for word-embeddings,
also from [12]. In PV-DBOW a sentence vector is used as
the sole input to a neural net. That network is tasked with
predicting the words in the sentence. At each training iter-
ation, the network is tasked to predict a number of words
from the sentence, selected with a specified window size, us-
ing the sentence vector being trained as the input. As with
PV-DM to infer embedding the rest of the network is locked,
and only the sentence vector input allowed to vary, it is then
trained to convergence.

2.1.4 Sum and Mean of Word Embeddings (SOWE
and MOWE)

Taking the element-wise sum or mean of the word embed-
dings over all words in the sentence also produces a vector
with the potential to encode meaning. Like traditional bag
of words no order information is encoded, but the model can
take into consideration word relations such as synonymity as
encoded by the word vectors. The mean was used as base-
line in [10]. The sum of word embeddings first considered
in [13] for short phrases, it was found to be an effective
model for summarization in [9]. The cosine distance, as is
commonly used when comparing distances between embed-
dings, is invariant between sum and mean of word embed-
dings. Both sum and mean of word embeddings are compu-
tationally cheap models, particularly given pretrained word
embeddings are available.

2.2 General Evaluation Methods
As discussed in the introduction, current methods of eval-

uating the quality of embedding are on direct practical ap-
plications designed down-stream.

Evaluation on a Paraphrase Detection task takes the form
of being presented with pairs of sentences and tasked with
determining if the sentences are paraphrases or not. The
MSRP Corpus, [3] which we used in the semantic classifica-
tion task, is intended for such use. This pairwise check is
valuable, and does indicate to a certain extent if the embed-
dings are capturing meaning, or not. However, by consider-
ing groups of paraphrases, a deeper intuition can be gained
on the arrangement of meaning within the vector space.

Sentiment Analysis is very commonly used task for eval-
uating embeddings. It was used both for the recursive au-
toencoder in [22] and for the paragraph vector models in
[10]. Sentiment Analysis is classifying a text as positive or
negative, or assigning a score as in the Sentiment Treebank



[23]. Determining the sentiment of a sentence is partially a
semantic task, but it is lacking in several areas that would
be required for meaning. For example, there is only an in-
direct requirement for the model to process the subject at
all. Sentiment Analysis is a key task in natural language
processing, but it is distinct from semantic meaning.

Document Classification is a classic natural language pro-
cessing task. A particular case of this is topic categoriza-
tion. Early work in the area goes back to [11] and [1].
Much more recently it has been used to assess the convo-
lution neural networks of [25], where the articles of several
news corpora were classified into categories such as“Sports”,
“Business” and “Entertainment”. A huge spectrum of differ-
ent sentences are assigned to the same topic. It is thus too
board and insufficiently specific to evaluate the consistency
of meanings. Information retrieval can be seen as the inverse
of the document classification task.

Information Retrieval is the task of identifying the docu-
ments which most match a query. Such document selection
depends almost entirely on topic matching. Suitable results
for information retrieval have no requirement to agree on
meaning, though text with the same meaning are more likely
to match the same queries.

The evaluation of semantic consistency requires a task
which is fine grained, and preserving meaning. Document
Classification and Information Retrieval are insufficiently
fine-grained. Sentiment Analysis does not preserve meaning,
only semantic orientation. Paraphrase Detection is directly
relevant to evaluating semantic constancy, however it is a bi-
nary choice based on a pairwise comparison – a more spatial
application is desirable for evaluating these vector spaces.
Thus the current down-steam application tasks are not suf-
ficient for assessing semantic consistency – more specialized
methods are required.

2.3 Evaluations of Semantic Consistency
Semantic consistency for word embeddings is often mea-

sured using the analogy task. In an analogy the meta-
relation: A is to B as C is to D. Mikolov et. al.[14] demon-
strated that the word-embedding models are semantically
consistent by showing that the semantic relations between
words were reflected as a linear offset in the vector space.
That is to say, for embeddings x̃a, x̃b, x̃c, x̃d correspond-
ing to words A, B, C and D, respectively; it was tested
that if for a strong relationship matching between A/B and
C/D, then the offset vector would be approximately equal:
x̃b − x̃a u x̃d − x̃c. Rearranging this in word space gets
the often quoted example of King − Man + Woman u Queen,
As man is to woman, king is to queen. In the rating task
as described by [8], the goal is to rank such analogous word
pairs based on the degree the relation matches. Thus to
evaluate the word-embedding model using this task, it was
a matter of sorting closeness of the corresponding offset vec-
tors. Surprisingly strong results were found on this task[14].
It was thus demonstrated that word embeddings were not
simply semantically consistent, but more so that this con-
sistency was displayed as local linearity. This result gives
confidence in the semantic quality of the word embeddings.
However, this relationship analogy test cannot be performed
for sentence embeddings.

Gershman et. al. [6], compares the distances of modi-
fied sentences in vector space, to the semantic distances as-
cribed to them by human raters. Like the analogy task for

word vectors, this task requires ranking the targets based
on the vector distance, however instead of rating on the
strength of relationships it measures simply the similarities
of the sentences to an original base sentence for each group.
In that evaluation 30 simple base sentences of the form A

[adjective1] [noun1] [prepositional phrase] [adjec-

tive2] [noun2] were modified to produce 4 difference de-
rived sentences. The derived sentences were produced by
swapping the nouns, swapping the adjectives, reversing the
positional phrase (so behind becomes in front of), and a
paraphrase by doing all of the aforementioned changes. Hu-
man raters were tasked with sorting the transformed sen-
tences in similarity to the base sentence. This evaluation
found that the embedding models considered did not agree
with the semantic similarity rankings placed by humans.
While the sentence embedding models performed poorly on
the distance ranking measure, it is also worth considering
how they perform on a meaning classification task.

A meaning classification task was recently proposed by
Ritter et. al. [17], to classify sentences based on which
spatial relationship was described. The task was to classify
the sentence as describing: Adhesion to Vertical Surface,
Support by Horizontal Surface, Full Containment, Partial
Containment, or Support from Above. In this evaluation
also, the sentences took a very structured form: There is

a [noun1] [on/in] the [noun2]. These highly structured
sentences take advantage of the disconnection between word
content and the positional relationship described to form a
task that must be solved by a compositional understanding
combining the understanding of the words. “The apple is
on the refrigerator” and “The magnet is on the refrigerator”
belong to two separate spatial categories, even though the
word content is very similar. Surprisingly, the simple model
of adding word vectors outperformed compositional models
such as the recursive autoencoder. The result does have
some limitation due to the highly artificial nature of the
sentences, and the restriction to categorizing into a small
number of classes based only on the meaning in terms of
positional relationship. To generalize this task, in this paper
we consider real world sentences being classed into groups
according to their full semantic meaning.

3. METHODOLOGY
To evaluate how well a model’s vectors capture the mean-

ing of a sentence, a semantic classification task was defined.
The task is to classify sentences into classes where each
shares the same meaning. Each class is thus defined as a
paraphrase groups. This is a far finer-grained task than
topic classification. It is a multiclass classification problem,
rather than the binary decision problem of paraphrase detec-
tion. Such multiclass classification requires the paraphrase
groups to be projected into compact and distinct groups in
the vector space. A model which produces such embeddings
which are thus easily classifiable according to their meaning
can been thus seen to have good semantic localization.

This semantic classification does not have direct practical
application – it is rare that the need will be to quantify
sentences into groups with the same prior known meaning.
Rather it serves as a measure to assess the models general
suitability for other tasks requiring a model with consistency
between meaning and embedding.

To evaluate the success at the task three main processes
are involved, as shown in Figure 1: Corpus Preparation,
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Figure 1: Process Diagram for the Evaluation of Semantic Consistency via our method

Model Preparation, and the Semantic Classification task it-
self.

3.1 Corpus Preparation
The construction of each of the corpora is detailed more

fully in the next section. In brief: Two corpora were con-
structed by selecting subsets of the Microsoft Research Para-
phrase (MSRP) [3] and of the Opinosis [5] corpora. The
corpora were partitioned into groups of paraphrases – sen-
tences with the same meaning. Any paraphrase groups with
less than three sentences were discarded. The paraphrase
grouping was carried out manually for Opinosis, and auto-
matically for the MSRP corpus using the existing paraphrase
pairings. The paraphrase groups divide the total semantic
space of the corpora into discrete classes, where each class
contains sentences sharing the same meaning.

It is by comparing the ability of the models to produce
embeddings which can be classified back into these classes,
that we can compare the real semantic space partitions to
their corresponding vector embedding space regions.

3.2 Model Preparation and Inferring Vectors
Prior to application to semantic classification, as with any

task the models had to be pretrained. Here we use the term
pretraining to differentiate the model training from the clas-
sifier training. The pretraining is not done using the evalua-
tion corpora as they are both very small. Instead other data
are used, and the inference/evaluation procedure given for
each method was then used to produce the vectors for each
sentence. The model parameters used are detailed below.

3.2.1 Unfolding Recursive Auto-Encoder (URAE)
In this evaluation we make use of the pretrained network

that Socher et. al. have graciously made available1, full in-

1http://www.socher.org/index.php/Main/DynamicPoolin-
gAndUnfoldingRecursiveAutoencodersForParaphraseDetec-
tion

formation is available in the paper[19]. It is initialized on
the unsupervised Collobert andWeston word embeddings[2],
and training on a subset of 150,000 sentences from the giga-
word corpus. It produces embeddings with 200 dimensions.
This pretrained model when used with dynamic pooling and
other word based features performed very well on the MSRP
corpus paraphrase detection. However in the evaluation be-
low the dynamic pooling techniques are not used as they
are only directly suitable for enhancing pairwise compar-
isons between sentences.

3.2.2 Paragraph Vector Methods (PV-DM and PV-
DBOW)

Both PV-DM and PV-DBOW, were evaluated using the
GenSim implementation [16] from the current develop branch2.
Both were trained on approximately 1.2 million sentences
from randomly selected Wikipedia articles, and the window
size was set to 8 words, and the vectors were of 300 dimen-
sions.

3.2.3 Sum and Mean of Word Embeddings (SOWE
and MOWE)

The word embeddings used for MOWE were taken from
the Google News pretrained model3 based on the method
described in [13]. This has been trained on 100 million sen-
tences from Google News. A small portion of the evalua-
tion corpus did not have embeddings in the Google News
model. These tokens were largely numerals, punctuation
symbols, proper nouns and unusual spellings, as well as the
stop-words: “and”, “a” and “of”. These words were simply
skipped. The resulting embeddings have 300 dimensions,
like the word embeddings they were based on.

2https://github.com/piskvorky/gensim/tree/develop/
3https://code.google.com/p/word2vec/
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3.2.4 Bag of Words (BOW and PCA BOW)
A bag of words (BOW) model is also presented as a base-

line. There is a dimension in each vector embedding for the
count of each token, including punctuation, in the sentence.
In the Opinosis and MSRP subcorpora there were a total of
1,085 and 2,976 unique tokens respectively, leading to BOW
embeddings of corresponding dimensionality. As it is a dis-
tributional rather than distributed representation, the BOW
model does not need any pretraining step. For comparison
to the lower dimensional models Principle Component Anal-
ysis (PCA) was applied to the BOW embeddings to produce
an additional baseline set of embeddings of 300 dimensions –
in line with PV-DM, PV-DBOW, SOWE, and MOWE mod-
els. It does not quite follow the steps shown in Figure 1, as
the PCA pretraining step is performed on the training em-
beddings only during the SVM classification process, and it
is used to infer the PCA BOW embeddings during the test-
ing step. This avoids unfair information transfer where the
PCA would otherwise be about to choose representations
optimized for the whole set, including the test data. It was
found that when the PCA model was allowed to cheat in
this way it performed a few percentage points better. The
bag of words models do not have any outside knowledge.

3.3 Semantic Classification
The core of this evaluation procedure is in the semantic

classification step. A support vector machine (SVM), with
a linear kernel, and class weighting was applied to the task
of predicting which paraphrase group each sentence belongs
to. Classification was verified using 3-fold cross-validation
across different splits of the testing/training data, the av-
erage results are shown in this section. The splits were in
proportion to the class size. For the smallest groups this
means there were two training cases and one test case to
classify.

In this paper, only a linear kernel was used, because a
more powerful kernel such as RBF may be able to com-
pensate for irregularities in the vector space, which makes
model comparison more difficult. Scikit-learn [15] was used
to orchestrate the cross-validation and to interface with the
LibLinear SVM implementation [4]. As the linear SVM’s
classification success depends on how linearly separable the
input data is, thus this assessed the quality of the localiza-
tion of the paraphrase groupings embeddings.

4. CORPUS CONSTRUCTION

4.1 Microsoft Research Paraphrased Grouped
Subcorpus

The MSRP corpus is a very well established data set for
the paraphrase detection task [3]. Sentences are presented
as pairs which are either paraphrases, or not. A significant
number of paraphrases appear in multiple different pairings.
Using this information, groups of paraphrases can be formed.

The corpus was partitioned according to sentence mean-
ing by taking the symmetric and transitive closures the set
of paraphrase pairs. For example if sentences A, B, C and
D were present in the original corpus as paraphrase pairs:
A, B, D, A andB,C then the paraphrase group {A,B,C,D}
is found. Any paraphrase groups containing less than 3
phrases were discarded. The resulting sub-corpus has the
breakdown as shown in Figure 2.
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Figure 2: Break down of how many paraphrases
groups are present in the MSRP subcorpus of which
sizes.It contains a total of 859 unique sentences, bro-
ken up into 273 paraphrase groups.
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Figure 3: Break down of how many paraphrases
groups are present in the Opinosis subcorpus of
which sizes. It contains a total of 521 unique sen-
tences, broken up into 89 paraphrase groups.

4.2 Opinosis Paraphrase Grouped Subcorpus
The Opinosis Corpus[5] was used as secondary source of

original real-world text. It is sourced from several online
review sites: Tripadvisor, Edmunds.com, and Amazon.com,
and contains single sentence statements about hotels, cars
and electronics. The advantage of this as a source for texts is
that comments on the quality of services and products tend
to be along similar lines. The review sentences are syntac-
tically simpler than sentences from a news-wire corpus, and
also contain less named entities. However, as they are from
more casual communications, the adherence to grammar and
spelling may be less formal.

Paraphrases were identified using the standard criterion:
bidirectional entailment. For a paraphrase group S of sen-
tences: ∀s1, s2 ∈ S, s1 � s2 ∧ s2 � s1, every sentence in
the group entails the every other sentence in the group. A
stricter interpretation of bidirectional entailment was used,
as compared to the“mostly bidirectional entailment”used in
the MSRP corpus. The grouping was carried out manually.
Where it was unclear as to the group a particular phrase
should belong to it was left out of the corpus entirely. The
general guidelines were as follows.



MSRP Subcorpus Opinosis Subcorpus

PV-DM 78.00% 38.26%
PV-DBOW 89.93% 32.19%

URAE 51.14% 20.86%
MOWE 97.91% 69.30%
SOWE 98.02% 68.75%
BOW 98.37% 65.23%

PCA BOW 97.96% 54.43%

Table 1: The semantic classification accuracy of the
various models across the two evaluation corpora.

• Tense, Transitional Phrases, and Discourse and Prag-
matic Markers were ignored.

• Statement intensity was coarsely quantized.

• Approximately equal quantitative and qualitative val-
ues were treated as synonymous.

• Sentences with entities mentioned explicitly were grouped
separately from similar statements where they were
implied.

• Sentences with additional information were grouped
separately from those without that information.

The final point is the most significant change from the prac-
tices apparent in the construction of the MSRP corpus. Sen-
tences with differing or additional information were classi-
fied as non-paraphrases. This requirement comes from the
definition of bidirectional entailment. For example, “The
staff were friendly and polite.”, “The staff were polite.” and
“The staff were friendly.” are in three separate paraphrase
groups. The creators of the MSRP corpus, however, note
“...the majority of the equivalent pairs in this dataset ex-
hibit ‘mostly bidirectional entailments’, with one sentence
containing information ‘that differs’ from or is not contained
in the other.” [3]. While this does lead to more varied para-
phrases; it strays from the strict linguistic definition of a
paraphrase, which complicates the evaluation of the seman-
tic space attempted here. This stricter adherence to bidi-
rectional entailment resulted in finer separation of groups,
which makes this a more challenging corpus.

After the corpus had been broken into paraphrase groups
some simple post-processing was done. Several artifacts
present in the original corpus were removed, such as sub-
stituting the ampersand symbol for &amp. Any paraphrase
groups containing identical sentences were merged, and du-
plicates removed. Finally, any group with less than three
phrases was discarded. With this complete the breakdown
is as in Figure 3.

Further information on the construction of the corpora in
this section, and download links are available online.4

5. RESULTS AND DISCUSSION

5.1 Classification Results and Discussion
The results of performing the evaluation method described

in Section §3 are shown in Table 1.

4http://white.ucc.asn.au/resources/para-
phrase grouped corpora/

While the relative performance of the models is similar
between the corpora, the absolute performance differs. On
the absolute scale, all the models perform much better on
the MSRP subcorpus than on the Opinosis subcorpus. This
can be attributed to the significantly more distinct classes in
the MSRP subcorpus. The Opinosis subcorpus draws a finer
line between sentences with similar meanings. As discussed
earlier, for example there is a paraphrase group for“The staff
were polite.”, another for “The staff were friendly.”, and a
third for “The staff were friendly and polite.”. Under the
guidelines used for paraphrases in MSRP, these would all
have been considered the same group. Secondly, there is a
much wider range of topics in the MSRP. Thus the para-
phrase groups with different meanings in MSRP corpus are
also more likely to have different topic entirely than those
from Opinosis. Thus the the ground truth of the seman-
tics separability of phrases from the MSRP corpus is higher
than for Opinosis, making the semantic classification of the
Opinosis subcorpus is a more challenging task.

The URAE model performs the worst of all models eval-
uated. In [9] is was suggested that the URAE’s poor per-
formance at summarizing the Opinosis corpus could poten-
tially be attributed to the less formally structured product
reviews – the URAE being a highly structured compositional
model. However, here it also performed poorly on the MSRP
– which it was created for [19]. The exact same model from
[19] was used here – though this did put it at a dimensional
disadvantage over the other models having 200 dimensions
to the other’s 300. The key difference from [19], beyond the
changing to a multiclass classification problem, was the lack
of the complementary word-level features as used in the dy-
namic pooling layer. This suggests the model could benefit
from such world level features – as the very strong perfor-
mance of the word-based model indicates.

The word based models, MOWE, SOWE, BOW and PCA
BOW, performed very well. This suggests that word choice
is a very significant factor in determining meaning; so much
so that the models which can make use of word order in-
formation, URAE and PV-DM, were significantly outper-
formed by methods which made more direct use of the word
content.

The very high performance of the BOW maybe attributed
to its very high dimensionality, though the MOWE and
SOWE performed similarly. The PCA step can be consid-
ered as being similar to choosing an optimal set of words to
keep so as to maximum variability in the bag of words. It
loses little performance, even though decreasing vector size
by an order of magnitude – particularly on the easier MSRP
dataset.

5.2 Model Agreement
The misclassifications of the models can be compared. By

selecting one of the test/train folds from the classification
task above, and comparing the predicted classifications for
each test-set sentence, the similarities of the models were
assessed. The heatmaps in Figure 4 show the agreement in
errors. Here misclassification agreement is given as an ap-
proximation to P (m1(x) = m2(x) |m1(x) 6= y ∧m2(x) 6= y),
for a randomly selected sentence x, with ground truth classi-
fication y, where the models m1 and m2 are used to produce
classifications. Only considering the cases where both mod-
els were incorrect, rather than simple agreement, avoids the
analysis being entirely dominated by the agreement of the

http://white.ucc.asn.au/resources/paraphrase_grouped_corpora/
http://white.ucc.asn.au/resources/paraphrase_grouped_corpora/
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Figure 4: The misclassification agreement between each of the models for the MSRP (left) and Opinosis
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models with the ground truth.
The word based models showed significant agreement. Un-

surprisingly MOWE and SOWE have almost complete agree-
ment in both evaluations. The other models showed less
agreement – while they got many of the same cases wrong
the models produced different misclassifications. This over-
all suggests that the various full sentence models are pro-
ducing substantially dissimilar maps from meaning to vec-
tor space. Thus it seems reasonable that using a ensemble
approach between multiple sentence models and one word-
based model would produce strong results. Yin and Schütze
[24] found this successful when combining different word em-
bedding models.

5.3 Limitations
This evaluation has some limitations. As with all such

empirical evaluations of machine learning models, a more
optimal choice of hyper-parameters and training data will
have an impact on the performance. In particular, if the
model training was on the evaluation data the models would
be expected to be better able to position their embedding.
This was however unfeasible due to the small sizes of the
datasets used for evaluation, and would not reflect real word
application of the models to data not prior seen. Beyond the
limitation of the use of the datasets is their contents.

The paraphrase groups were not selected to be indepen-
dent of the word content overlap – they were simply collected
on commonality of meaning from real world sourced corpora.
This is a distinct contrast to the the work of Ritter et. al.[17]
discussed in section 2.3 where the classes were chosen to not
have meaningful word overlap. However our work is com-
plementary to theirs, and our findings are well aligned. The
key difference in performance is the magnitude of the per-
formance of the sum of word embeddings (comparable to
the mean of word embeddings evaluated here). In [17] the

word embedding model performed similarly to the best of
the more complex models. In the results presented above
we find that the word embedding based model performs sig-
nificantly beyond the more complex models. This can be
attributed to the word overlap in the paraphrase groups –
in real-world speech people trying to say the same thing do
in-fact use the same words very often.

6. CONCLUSION
A method was presented, to evaluate the semantic local-

ization of sentence embedding models. Semantically equiv-
alent sentences are those which exhibit bidirectional entail-
ment – they each imply the truth of the other. Paraphrases
are semantically equivalent. The evaluation method is a
semantic classification task – to classify sentences as be-
longing to a paraphrase group of semantically equivalent
sentences. The datasets used were derived from subsets of
existing sources, the MRSP and the Opinosis corpora. The
relative performance of various models was consistent across
the two tasks, though differed on an absolute scale.

The word embedding and bag of word models performed
best, followed by the paragraph vector models, with the
URAE trailing in both tests. The strong performance of the
sum and mean of word embeddings (SOWE and MOWE)
compared to the more advanced models aligned with the re-
sults of Ritter et. al.[17]. The difference in performance pre-
sented here for real-word sentences, were more marked than
for the synthetic sentence used by Ritter et. al. This may
be attributed to real-world sentences often having meaning
overlap correspondent to word overlap – as seen also in the
very strong performance of bag of words. Combining the
result of this work with those of Ritter et. al., it can be
concluded that summing word vector representations is a
practical and surprisingly effective method for encoding the
meaning of a sentence.
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